
ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 1 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

What Is the ARM Cortex-M3 PROCESSOR?

The microcontroller market is vast, with more than 20 billion devices per year estimated to be

shipped in 2010. A bewildering array of vendors, devices, and architectures is competing in this

market. The requirement for higher performance microcontrollers has been driven globally by

the industry’s changing needs; for example, microcontrollers are required to handle more work

without increasing a product’s frequency or power. In addition, microcontrollers are becoming

increasingly connected, whether by Universal Serial Bus (USB), Ethernet, or wireless radio, and

hence, the processing needed to support these communication channels and advanced peripherals

are growing.

The ARM Cortex™-M3 processor, the first of the Cortex generation of processors released by

ARM in 2006, was primarily designed to target the 32-bit microcontroller market. The Cortex-

M3 processor provides excellent performance at low gate count and comes with many new

features previously available only in high-end processors. The Cortex-M3 addresses the

requirements for the 32-bit embedded processor market in the following ways:

• Greater performance efficiency: allowing more work to be done without increasing the

frequency or power requirements

• Low power consumption: enabling longer battery life, especially critical in portable products

including wireless networking applications.

• Enhanced determinism: guaranteeing that critical tasks and interrupts are serviced as

quickly as possible and in a known number of cycles

 • Improved code density: ensuring that code fits in even the smallest memory footprints

• Ease of use: providing easier programmability and debugging for the growing number of 8-bit

and 16-bit users migrating to 32 bits

• Lower cost solutions: reducing 32-bit-based system costs close to those of legacy 8-bit and 16-

bit devices and enabling low-end, 32-bit microcontrollers to be priced at less than US$1 for the

first time

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 2 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

 • Wide choice of development tools: from low-cost or free compilers to full-featured

development suites from many development tool vendors.

Background of ARM and ARM Architecture

ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple Computer,

Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6 processor

family, and VLSI became the initial licensee. Subsequently, additional companies, including

Texas Instruments, NEC, Sharp, and ST Microelectronics, licensed the ARM processor designs,

extending the applications of ARM processors into mobile phones, computer hard disks, personal

digital assistants (PDAs), home entertainment systems, and many other consumer products.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 3 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Architecture Versions:

Over the years, ARM has continued to develop new processors and system blocks. These include the

popular ARM7TDMI processor and, more recently, the ARM1176TZ(F)-S processor, which is used in

high-end applications such as smart phones. The evolution of features and enhancements to the processors

over time has led to successive versions of the ARM architecture. Note that architecture version numbers

are independent from processor names. For example, the ARM7TDMI processor is based on the

ARMv4T architecture (the T is for Thumb® instruction mode support).

Over the past several years, ARM extended its product portfolio by diversifying its CPU

development, which resulted in the architecture version 7 or v7. In this version, the architecture

design is divided into three profiles:

 • The A profile is designed for high-performance open application platforms.

 • The R profile is designed for high-end embedded systems in which real-time performance is

needed.

• The M profile is designed for deeply embedded microcontroller-type systems.

• A Profile (ARMv7-A): Application processors which are designed to handle complex

applications such as high-end embedded operating systems (OSs) (e.g., Symbian, Linux,

and Windows Embedded). These processors requiring the highest processing power,

virtual memory system support with memory management units (MMUs), and,

optionally, enhanced Java support and a secure program execution environment. Example

products include high-end mobile phones and electronic wallets for financial transactions.

• R Profile (ARMv7-R): Real-time, high-performance processors targeted primarily at

the higher end of the real-time1 market—those applications, such as high-end breaking

systems and hard drive controllers, in which high processing power and high reliability

are essential and for which low latency is important.

 • M Profile (ARMv7-M): Processors targeting low-cost applications in which

processing efficiency is important and cost, power consumption, low interrupt latency,

and ease of use are critical, as well as industrial control applications, including real-time

control systems.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 4 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Thumb-2 Technology and Instruction Set Architecture:

The Thumb-23 technology extended the Thumb Instruction Set Architecture (ISA) into a

highly efficient and powerful instruction set that delivers significant benefits in terms of

ease of use, code size, and performance (see Figure 1). The extended instruction set in

Thumb-2 is a superset of the previous 16-bit Thumb instruction set, with additional 16-bit

instructions alongside 32-bit instructions. It allows more complex operations to be carried

out in the Thumb state, thus allowing higher efficiency by reducing the number of states

switching between ARM state and Thumb state.

Fig.1 the Relationship between the Thumb Instructions Set in Thumb-2 Technology and the Traditional

Thumb

With support for both 16-bit and 32-bit instructions in the Thumb-2 instruction set, there is no

need to switch the processor between Thumb state (16-bit instructions) and ARM state (32-bit

instructions). For example, in ARM7 or ARM9 family processors, you might need to switch to

ARM state if you want to carry out complex calculations or a large number of conditional

operations and good performance is needed, whereas in the Cortex-M3 processor, you can mix

32-bit instructions with 16-bit instructions without switching state, getting high code density and

high performance with no extra complexity.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 5 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Cortex-M3 Processor Applications:

• Low-cost microcontrollers: The Cortex-M3 processor is ideally suited for low-cost

microcontrollers, which are commonly used in consumer products, from toys to electrical

appliances. It is a highly competitive market due to the many well-known 8-bit and 16-bit

microcontroller products on the market. Its lower power, high performance, and ease-of-

use advantages enable embedded developers to migrate to 32-bit systems and develop

products with the ARM architecture.

• Automotive: Another ideal application for the Cortex-M3 processor is in the automotive

industry. The Cortex-M3 processor has very high-performance efficiency and low

interrupt latency, allowing it to be used in real-time systems. The Cortex-M3 processor

supports up to 240 external vectored interrupts, with a built-in interrupt controller with

nested interrupt supports and an optional MPU, making it ideal for highly integrated and

cost-sensitive automotive applications.

• Data communications: The processor’s low power and high efficiency, coupled with

instructions in Thumb-2 for bit-field manipulation, make the Cortex-M3 ideal for many

communications applications, such as Bluetooth and ZigBee.

• Industrial control: In industrial control applications, simplicity, fast response, and

reliability are key factors. Again, the Cortex-M3 processor’s interrupt feature, low

interrupt latency, and enhanced fault-handling features make it a strong candidate in this

area.

• Consumer products: In many consumer products, a high-performance microprocessor (or

several of them) is used. The Cortex-M3 processor, being a small processor, is highly

efficient and low in power and supports an MPU enabling complex software to execute

while providing robust memory protection.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 6 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Architecture of ARM Cortex M3:

The Cortex™-M3 is a 32-bit microprocessor. It has a 32-bit data path, a 32-bit register bank, and

32-bit memory interfaces (see Figure 2). The processor has a Harvard architecture, which means

that it has a separate instruction bus and data bus. This allows instructions and data accesses to

take place at the same time, and as a result of this, the performance of the processor increases

because data accesses do not affect the instruction pipeline. This feature results in multiple bus

interfaces on Cortex-M3, each with optimized usage and the ability to be used simultaneously.

However, the instruction and data buses share the same memory space (a unified memory

system). In other words, you cannot get 8 GB of memory space just because you have separate

bus interfaces.

Fig2. A Simplified View of the Cortex-M3.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 7 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

• The Cortex-M3 processor is a 32-bit processor, with a 32-bit wide data path, register

bank and memory interface. There are 13 general-purpose registers, two stack pointers, a

link register, a program counter and a number of special registers including a program

status register.

• The Cortex-M3 core contains a decoder for traditional Thumb and new Thumb-2

instructions, an advanced ALU with support for hardware multiply and divide, control

logic, and interfaces to the other components of the processor.

• The Cortex-M3 processor is a 32-bit processor, with a 32-bit wide data path, register

bank and memory interface. There are 13 general-purpose registers, two stack pointers, a

link register, a program counter and a number of special registers including a program

status register.

• The Cortex-M3 processor is a memory mapped system with a simple, fixed memory map

for up to 4 gigabytes of addressable memory space with predefined, dedicated addresses

for code (code space), SRAM(memory space), external memories/devices and

internal/external peripherals. There is also a special region to provide for vendor specific

addressability.

• The MPU is an optional component of the Cortex-M3 processor that can improve the

reliability of an embedded system by protecting critical data used by the operating system

from user applications, separating processing tasks by disallowing access to each other's

data, disabling access to memory regions, allowing memory regions to be defined as

read-only and detecting unexpected memory accesses that could potentially break the

system.

• The highly configurable NVIC is an integral part of the Cortex-M3 processor and

provides the processor’s outstanding interrupt handling abilities. In its standard

implementation it supplies a NonMaskable Interrupt (NMI) and 32 general purpose

physical interrupts with 8 levels of pre-emption priority. It can be configured to anywhere

between 1 and 240 physical interrupts with up to 256 levels of priority though simple

synthesis choices.

• The debug access into a Cortex-M3 processor based system is through the Debug Access

Port (DAP) that can be implemented as either a Serial Wire Debug Port (SW-DP) for a

two-pin (clock and data) Interface or a Serial Wire JTAG Debug Port (SWJ-DP) that

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 8 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

enables either JTAG or SW protocol to be used. The SWJ-DP defaults to JTAG mode on

power reset and can be made to switch protocols with a specific control sequence

provided by the external debug hardware.

• The Cortex-M3 processor bus matrix connects the processor and debug interface to the external

buses; the 32-bit AMBA® AHB-Lite based ICode, DCode and System interfaces and the 32-bit

AMBA APB™ based Private Peripheral Bus (PPB). The bus matrix also implements unaligned

data accesses and bit banding.

Registers in Cortex-M3 processor:

The Cortex-M3 processor has registers R0 through R15. R13 (the stack pointer) is banked, with only

one copy of the R13 visible at a time.

R0–R12: General-Purpose Registers R0–R12 are 32-bit general-purpose registers for data operations.

Some 16-bit Thumb® instructions can only access a subset of these registers (low registers, R0–R7).

R13: Stack Pointers The Cortex-M3 contains two stack pointers (R13). They are banked so that only

one is visible at a time. The two stack pointers are as follows: • Main Stack Pointer (MSP): The

default stack pointer, used by the operating system (OS) kernel and exception handlers • Process

Stack Pointer (PSP): Used by user application code.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 9 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

R14: The Link Register When a subroutine is called, the return address is stored in the link register.

R15: The Program Counter The program counter is the current program address. This register can be

written to control the program flow.

Stack Pointer R13

R13 is the stack pointer (SP). In the Cortex-M3 processor, there are two SPs. This duality allows

two separate stack memories to be set up. When using the register name R13, you can only

access the current SP; the other one is inaccessible unless you use special instructions to move to

special register from general-purpose register (MSR) and move special register to general-

purpose register (MRS).

The two SPs are as follows:

• Main Stack Pointer (MSP) or SP_main in ARM documentation: This is the default SP; it is

used by the operating system (OS) kernel, exception handlers, and all application codes that

require privileged access.

 • Process Stack Pointer (PSP) or SP_process in ARM documentation: This is used by the

base-level application code (when not running an exception handler).

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 10 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

In the Cortex-M3, the instructions for accessing stack memory are PUSH and POP. The assembly

language syntax is as follows (text after each semicolon [;] is a comment):

PUSH {R0} ; R13=R13-4, then Memory[R13] = R0

POP {R0} ; R0 = Memory[R13], then R13 = R13 + 4

Link Register R14:

R14 is the link register (LR). Inside an assembly program, you can write it as either R14 or LR.

LR is used to store the return program counter (PC) when a subroutine or function is called—for

example, when you’re using the branch and link (BL) instruction:

Program Counter R15:

R15 is the PC. You can access it in assembler code by either R15 or PC. Because of the pipelined nature

of the Cortex-M3 processor, when you read this register, you will find that the value is different than the

location of the executing instruction, normally by 4.

0x1000 : MOV R0, PC ; R0 = 0x1004

In other instructions like literal load (reading of a memory location related to current PC value),

the effective value of PC might not be instruction address plus 4 due to alignment in address

calculation. But the PC value is still at least 2 bytes ahead of the instruction address during

execution

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 11 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Special Registers:

The Cortex-M3 processor also has a number of special registers.

They are as follows:

 • Program Status registers (PSRs)

• Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)

• Control register (CONTROL)

Special registers can only be accessed via MSR and MRS instructions; they do not have memory

addresses:

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 12 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Built-In Nested Vectored Interrupt Controller:

The Cortex-M3 processor includes an interrupt controller called the Nested Vectored Interrupt

Controller (NVIC). It is closely coupled to the processor core and provides a number of features

as follows:

• Nested interrupt support

• Vectored interrupt support

• Dynamic priority changes support

• Reduction of interrupt latency

• Interrupt masking

Nested Interrupt Support: The NVIC provides nested interrupt support. All the external

interrupts and most of the system exceptions can be programmed to different priority levels.

When an interrupt occurs, the NVIC compares the priority of this interrupt to the current running

priority level. If the priority of the new interrupt is higher than the current level, the interrupt

handler of the new interrupt will override the current running task.

Vectored Interrupt Support: The Cortex-M3 processor has vectored interrupt support.

When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is

located from a vector table in memory. There is no need to use software to determine and branch

to the starting address of the ISR. Thus, it takes less time to process the interrupt request.

Dynamic Priority Changes Support: Priority levels of interrupts can be changed by

software during run time. Interrupts that are being serviced are blocked from further activation

until the ISR is completed, so their priority can be changed without risk of accidental reentry.

Reduction of Interrupt Latency: The Cortex-M3 processor also includes a number of advanced

features to lower the interrupt latency. These include automatic saving and restoring some

register contents, reducing delay in switching from one ISR to another, and handling of late

arrival interrupts

Interrupt Masking: Interrupts and system exceptions can be masked based on their priority

level or masked completely using the interrupt masking registers BASEPRI, PRIMASK, and

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 13 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

FAULTMASK. They can be used to ensure that time-critical tasks can be finished on time

without being interrupted.

The Memory Map:

The Cortex-M3 has a predefined memory map. This allows the built-in peripherals, such as the

interrupt controller and the debug components, to be accessed by simple memory access

instructions. Thus, most system features are accessible in C program code. The predefined

memory map also allows the Cortex-M3 processor to be highly optimized for speed and ease of

integration in system-on-a-chip (SoC) designs.

The Cortex-M3 design has an internal bus infrastructure optimized for this memory usage. In

addition, the design allows these regions to be used differently. For example, data memory can

still be put into the CODE region, and program code can be executed from an external Random

Access Memory (RAM) region.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 14 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Bus Interface:

There are several bus interfaces on the Cortex-M3 processor. They allow the Cortex-M3 to carry

instruction fetches and data accesses at the same time.

The main bus interfaces are as follows:

• Code memory buses

• System bus

• Private peripheral bus

 The code memory region access is carried out on the code memory buses, which physically

consist of two buses, one called I-Code and other called D-Code. These are optimized for

instruction fetches for best instruction execution speed. The system bus is used to access memory

and peripherals. This provides access to the Static Random Access Memory (SRAM),

peripherals, external RAM, external devices, and part of the system level memory regions.

The Instruction Set:

The Cortex-M3 supports the Thumb-2 instruction set. This is one of the most important features

of the Cortex-M3 processor because it allows 32-bit instructions and 16-bit instructions to be

used together for high code density and high efficiency. It is flexible and powerful yet easy to

use.

 In previous ARM processors, the central processing unit (CPU) had two operation states: a 32-

bit ARM state and a 16-bit Thumb state. In the ARM state, the instructions are 32 bits and can

execute all supported instructions with very high performance. In the Thumb state, the

instructions are 16 bits, so there is a much higher instruction code density, but the Thumb state

does not have all the functionality of ARM instructions and may require more instructions to

complete certain types of operations.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 15 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Cortex-M3 processor has a number of advantages over traditional ARM processors, such as:

• No state switching overhead, saving both execution time and instruction space

• No need to separate ARM code and Thumb code source files, making software development

and maintenance easier

 • It’s easier to get the best efficiency and performance, in turn making it easier to write software,

because there is no need to worry about switching code between ARM and Thumb to try to get

the best density/performance.

The Cortex-M3 processor has a number of interesting and powerful instructions. Here are a few

examples:

• UFBX, BFI, and BFC: Bit field extract, insert, and clear instructions

 • UDIV and SDIV: Unsigned and signed divide instructions

• WFE, WFI, and SEV: Wait-For-Event, Wait-For-Interrupts, and Send-Event; these allow the

processor to enter sleep mode and to handle task synchronization on multiprocessor systems

• MSR and MRS: Move to special register from general-purpose register and move special

register to general-purpose register; for access to the special registers.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 16 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Interrupts and Exceptions:

The Cortex-M3 processor implements a new exception model, introduced in the ARMv7-M

architecture. This exception model differs from the traditional ARM exception model, enabling

very efficient exception handling. It has a number of system exception handling. It has a number

of system exceptions plus a number of external Interrupt Request (IRQs) (external interrupt

inputs).

There is no fast interrupt (FIQ) (fast interrupt in ARM7/ARM9/ ARM10/ARM11) in the Cortex-

M3; however, interrupt priority handling and nested interrupt support are now included in the

interrupt architecture. Therefore, it is easy to set up a system that supports nested interrupts (a

higher-priority interrupt can override or preempt a lower-priority interrupt handler) and that

behaves just like the FIQ in traditional ARM processors.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 17 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Debugging Support:

The Cortex-M3 processor includes a number of debugging features, such as program execution

controls, including halting and stepping, instruction breakpoints, data watchpoints, registers and

memory accesses, profiling, and traces. The debugging hardware of the Cortex-M3 processor is

based on the CoreSight™ architecture.

Unlike traditional ARM processors, the CPU core itself does not have a Joint Test Action Group

(JTAG) interface. Instead, a debug interface module is decoupled from the core, and a bus

interface called the Debug Access Port (DAP) is provided at the core level. Through this bus

interface, external debuggers can access control registers to debug hardware as well as system

memory, even when the processor is running. The control of this bus interface is carried out by a

Debug Port (DP) device.

 The DPs currently available are the Serial-Wire JTAG Debug Port (SWJ-DP) (supports the

traditional JTAG protocol as well as the Serial-Wire protocol) or the SW-DP (supports the

Serial-Wire protocol only). A JTAG-DP module from the ARM CoreSight product family can

also be used. Chip manufacturers can choose to attach one of these DP modules to provide the

debug interface.

Chip manufacturers can also include an Embedded Trace Macrocell (ETM) to allow instruction

trace. Trace information is output via the Trace Port Interface Unit (TPIU), and the debug host

(usually a Personal Computer [PC]) can then collect the executed instruction information via

external trace capturing hardware.

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 18 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Stack Memory Operations:

In the Cortex-M3, besides normal software-controlled stack PUSH and POP, the stack PUSH and POP

operations are also carried out automatically when entering or exiting an exception/interrupt handler. In

this section, we examine the software stack operations.

Operation:

In general, stack operations are memory write or read operations, with the address specified by

an SP. Data in registers is saved into stack memory by a PUSH operation and can be restored to

registers later by a POP operation. The SP is adjusted automatically in PUSH and POP so that

multiple data PUSH will not cause old stacked data to be erased.

The function of the stack is to store register contents in memory so that they can be restored

later, after a processing task is completed. For normal uses, for each store (PUSH), there must be

a corresponding read (POP), and the address of the POP operation should match that of the

PUSH operation. When PUSH/POP instructions are used, the SP is incremented/decremented

automatically. When program control returns to the main program, the R0–R2 contents are the

same as before.

Notice the order of PUSH and POP: The POP order must be the reverse of PUSH. These

operations can be simplified, thanks to PUSH and POP instructions allowing multiple load and

store. In this case, the ordering of a register POP is automatically reversed by the processor. You

can also combine RETURN with a POP operation. This is done by pushing the LR to the stack

and popping it back to PC at the end of the subroutine.

Cortex-M3 Stack Implementation:

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 19 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Reset Sequence: After the processor exits reset, it will read two words from memory

• Address 0x00000000: Starting value of R13 (the SP)

• Address 0x00000004: Reset vector (the starting address of program execution; LSB should be set to 1

to indicate Thumb state)

This differs from traditional ARM processor behavior. Previous ARM processors executed program code

starting from address 0x0. Furthermore, the vector table in previous ARM devices was instructions .

Fig3.Reset sequence

no
tes

4f
ree

.in

ARM-32 BIT MICROCTROLLER MODULE-1

SVIT,ECE DEPT Page 20 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

FIG.4 Initial Stack Pointer Value and Initial Program Counter Value Example.

In the Cortex-M3, the initial value for the MSP is put at the beginning of the memory map,

followed by the vector table, which contains vector address values. (The vector table can be

relocated to another location later, during program execution.) In addition, the contents of the

vector table are address values not branch instructions. The first vector in the vector table

(exception type 1) is the reset vector, which is the second piece of data fetched by the processor

after reset. Because the stack operation in the Cortex-M3 is a full descending stack (SP

decrement before store), the initial SP value should be set to the first memory after the top of the

stack region. For example, if you have a stack memory range from 0x20007C00 to 0x20007FFF

(1 KB), the initial stack value should be set to 0x20008000.

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 1 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

ARM CORTEX M3 INSTRUCTION SET

Assembly basics:

Registers

 The Cortex™-M3 processor has registers R0 through R15 and a number of special registers. R0

through R12 are general purpose, but some of the 16-bit Thumb® instructions can only access

R0 through R7 (low registers), whereas 32-bit Thumb-2 instructions can access all these

registers. Special registers have predefined functions and can only be accessed by special register

access instructions.

General Purpose Registers R0 through R7

The R0 through R7 general purpose registers are also called low registers. They can be accessed

by all 16-bit Thumb instructions and all 32-bit Thumb-2 instructions. They are all 32 bits; the

reset value is unpredictable.

General Purpose Registers R8 through R12

The R8 through R12 registers are also called high registers. They are accessible by all Thumb-2

Instructions but not by all 16-bit Thumb instructions. These registers are all 32 bits; the reset

value is unpredictable.

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 2 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Assembler Language: Basic Syntax

In assembler code, the following instruction formatting is commonly used:

Label opcode operand1, operand2, ...; Comments

The label is optional. Some of the instructions might have a label in front of them so that the

address of the instructions can be determined using the label. Then, you will find the op-code

(the instruction) followed by a number of operands. Normally, the first operand is the destination

of the operation.

For example, immediate data are usually in the form #number, as shown

here:

MOV R0, #0Xff ; Set R0 = 0xFF (hexadecimal)

MOV R1, #'S' ; Set R1 = ASCII character S

MOV R2, #'V' ; Set R1 = ASCII character V

MOV R3, #'I' ; Set R1 = ASCII character I

MOV R4, #'T' ; Set R1 = ASCII character T

The text after each semicolon (;) is a comment. These comments do not affect the program

operation, but they can make programs easier for humans to understand.

Assembler Language: Moving Data

One of the most basic functions in a processor is transfer of data. In the Cortex-M3, data

transfers can be of one of the following types:

• Moving data between register and register

• Moving data between memory and register

• Moving data between special register and register

• Moving an immediate data value into a register

The command to move data between registers is MOV (move). For example, moving data from

register R3 to register R8 looks like this:

MOV R8, R3

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 3 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Another instruction can generate the negative value of the original data; it is called MVN (move

negative).

The basic instructions for accessing memory are Load and Store.

 Load (LDR) :transfers data from memory to registers, and Store transfers data from registers to memory.

The exclamation mark (!) in the instruction specifies whether the register Rd should be updated

after the instruction is completed.

For example, if R8 equals 0x8000:

STMIA.W R8!, {R0-R3} ; R8 changed to 0x8010 after store; (increment by 4 words)

STMIA.W R8 , {R0-R3} ; R8 unchanged after store

ARM processors also support memory accesses with preindexing and postindexing. For

preindexing, the register holding the memory address is adjusted. The memory transfer then

takes place with the updated address. For example,

LDR.W R0,[R1, #offset]! ; Read memory[R1+offset], with R1
 ; update to R1+offset

no

tes
4f

ree
.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 4 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Two other types of memory operation are stack PUSH and stack POP. For example,

PUSH {R0, R4-R7, R9} ; Push R0, R4, R5, R6, R7, R9 into stack memory

POP {R2,R3} ; Pop R2 and R3 from stack

Usually a PUSH instruction will have a corresponding POP with the same register list, but this is

not always necessary. For example, a common exception is when POP is used as a function

return:

PUSH {R0-R3, LR} ; Save register contents at beginning of subroutine..Processing

POP {R0-R3, PC} ; restore registers and return

In this case, instead of popping the LR register back and then branching to the address in LR, we

POP the address value directly in the program counter. The Cortex-M3 has a number of special

registers.

To access these registers, we use the instructions MRS and MSR.

For example,

MRS R0, PSR ; Read Processor status word into R0

MSR CONTROL, R1 ; Write value of R1 into control register

Note :Unless you’re accessing the APSR, you can use MSR or MRS to access other special

registers only in Privileged mode.

Moving immediate data into a register is a common thing to do. For example, you might want to

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 5 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

access a peripheral register, so you need to put the address value into a register beforehand. For

small values (8 bits or less), you can use MOVS (move).

For example,

MOVS R0, #0x12 ; Set R0 to 0x12

For a larger value (over 8 bits), you might need to use a Thumb-2 move instruction. For example,

MOVW.W R0, #0x789A ; Set R0 to 0x789A

Or if the value is 32-bit, you can use two instructions to set the upper and lower halves:

MOVW.W R0,#0x789A ; Set R0 lower half to 0x789A

MOVT.W R0,#0x3456 ; Set R0 upper half to 0x3456.Now R0=0x3456789A

Assembler Language: Processing Data

The Cortex-M3 provides many different instructions for data processing. A few basic ones are

Introduced here. Many data operation instructions can have multiple instruction formats. For

example,an ADD instruction can operate between two registers or between one register and an

immediate data value:

ADD R0, R0, R1 ; R0 = R0 + R1

ADDS R0, R0, #0x12 ; R0 = R0 + 0x12

ADD.W R0, R1, R2 ; R0 = R1 + R2

These are all ADD instructions, but they have different syntaxes and binary coding. With the

traditional Thumb instruction syntax, when 16-bit Thumb code is used, an ADD instruction can

change the flags in the PSR. However, 32-bit Thumb-2 code can either change a flag or keep it

unchanged. To separate the two different operations, the S suffix should be used if the following

operation depends on the flags:

ADD.W R0, R1, R2 ; Flag unchanged

ADDS.W R0, R1, R2 ; Flag change

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 6 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Multiplication 32bit instruction:

Logic Operation Instructions

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 7 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Shift and Rotate Instructions:

Data Reverse Ordering Instructions:

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 8 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Assembler Language: Call and Unconditional Branch

The most basic branch instructions are as follows:

B label ; Branch to a labeled address

BX reg ; Branch to an address specified by a register

In BX instructions, the LSB of the value contained in the register determines the next state

(Thumb/ARM) of the processor. In the Cortex-M3, because it is always in Thumb state, this bit

should be set to 1.

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 9 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Flag Bits in APSR that Can Be Used for Conditional Branches

Conditions for Branches or Other Conditional Operations

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 10 Prepared by Prof.Pavankumar.E,
Prof.Pavithra.G.S

The compare (CMP) instruction subtracts two values and updates the flags (just like SUBS), but

the result is not stored in any registers. CMP can have the following formats:

CMP R0, R1 ; Calculate R0 – R1 and update flag

CMP R0, #0x12 ; Calculate R0 – 0x12 and update flag

A similar instruction is the CMN (compare negative). It compares one value to the negative

(two’s complement) of a second value; the flags are updated, but the result is not stored in any

registers:

CMN R0, R1 ; Calculate R0 – (-R1) and update flag

CMN R0, #0x12 ; Calculate R0 – (-0x12) and update flag

The TST (test) instruction is more like the AND instruction. It ANDs two values and updates the

flags. However, the result is not stored in any register. Similarly to CMP, it has two input

formats:

TST R0, R1 ; Calculate R0 AND R1 and update flag

TST R0, #0x12 ; Calculate R0 AND 0x12 and update flag

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 11 Prepared by Prof.Pavankumar.E,
Prof.Pavithra.G.S

Assembler Language: Combined Compare and Conditional Branch

With ARM architecture v7-M, two new instructions are provided on the Cortex-M3 to supply a

simple compare with zero and conditional branch operations. These are CBZ (compare and

branch if zero) and CBNZ (compare and branch if nonzero).

The compare and branch instructions only support forward branches. For example,

i = 5;

while (i != 0)

{

func1(); call a function

i−−;

}

This can be compiled into the following:

MOV R0, #5 ; Set loop counter

loop1 CBZ R0,loop1exit ; if loop counter = 0 then exit the loop

BL func1 ; call a function

SUB R0, #1 ; loop counter decrement

B loop1 ; next loop

loop1exit

The usage of CBNZ is similar to CBZ, apart from the fact that the branch is taken if the Z flag is

not set (result is not zero). For example,

status = strchr(email_address, '@');

if (status == 0){//status is 0 if @ is not in email_address

show_error_message();

exit(1);

}

MSR and MRS:

These two instructions provide access to the special registers in the Cortex-M3. Here is the

syntax of these instructions:

MRS <Rn>, <SReg> ; Move from Special Register

no
tes

4f
ree

.in

ARM Cortex M3 Instruction Sets and Programming MODULE-2

SVIT,ECE DEPT Page 12 Prepared by Prof.Pavankumar.E,
Prof.Pavithra.G.S

MSR <SReg>, <Rn> ; Write to Special Register

A Typical Development Flow

Various software programs are available for developing Cortex-M3 applications. The concepts of

code Generation flow in terms of these tools are similar. For the most basic uses, you will need

assembler, a C compiler, a linker, and binary file generation utilities.

Example of a Simple C Program:

#define LED *((volatile unsigned int *)(0xDFFF000C))
int main (void)
{
int i; /* loop counter for delay function */
volatile int j; /* dummy volatile variable to prevent
C compiler from optimize the delay away */
while (1)
{
LED = 0x00; /* toogle LED */
for (i=0;i<10;i++) {j=0;} /* delay */
LED = 0x01; /* toogle LED */
for (i=0;i<10;i++) {j=0;} /* delay */
}
return 0;
}

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 1 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

.DEFINITION OF AN EMBEDDED SYSTEM

An embedded system is a combination of 3 types of components: a. Hardware b. Software c.
Mechanical Components and it is supposed to do one specific task only.

 Example 1: Washing Machine

 A washing machine from an embedded systems point of view has: a. Hardware: Buttons, Display
& buzzer, electronic circuitry. b. Software: It has a chip on the circuit that holds the software which
drives controls & monitors the various operations possible. c. Mechanical Components: the
internals of a washing machine which actually wash the clothes control the input and output of
water, the chassis itself.

Example 2: Air Conditioner

 An Air Conditioner from an embedded systems point of view has: a. Hardware: Remote, Display
& buzzer, Infrared Sensors, electronic circuitry. b. Software: It has a chip on the circuit that holds
the software which drives controls & monitors the various operations possible. The software
monitors the external temperature through the sensors and then releases the coolant or suppresses
it. c. Mechanical Components: the internals of an air conditioner the motor, the chassis, the outlet,
etc An embedded system is designed to do a specific job only.

 Example: a washing machine can only wash clothes, an air conditioner can control the
temperature in the room in which it is placed.

The hardware & mechanical components will consist all the physically visible things that are used
for input, output, etc. An embedded system will always have a chip (either microprocessor or
microcontroller) that has the code or software which drives the system

EMBEDDED SYSTEM & GENERAL PURPOSE COMPUTER

The Embedded System and the General purpose computer are at two extremes. The embedded
system is designed to perform a specific task whereas as per definition the general purpose
computer is meant for general use. It can be used for playing games, watching movies, creating
software, work on documents or spreadsheets etc. Following are certain specific points that
differenciates between embedded systems and general purpose computers:

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 2 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

CLASSIFICATION OF EMBEDDED SYSTEMS

The classification of embedded system is based on following criteria's:

 On generation
 On complexity & performance

 On deterministic behavior
 On triggering

 On generation:

1. First generation (1G):

 Built around 8bit microprocessor & microcontroller.

 Simple in hardware circuit & firmware developed.
 Examples: Digital telephone keypads.

 2. Second generation (2G):

 Built around 16-bit µp & 8-bit µc.

 They are more complex & powerful than 1G µp & µc.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 3 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 Examples: SCADA systems

3. Third generation (3G):

 Built around 32-bit µp& 16-bit µc.

 Concepts like Digital Signal Processors (DSPs), Application Specific Integrated
Circuits(ASICs) evolved. Examples: Robotics, Media, etc.

 4. Fourth generation:

 Built around 64-bit µp & 32-bit µc.
 The concept of System on Chips (SoC), Multicore Processors evolved.

 Highly complex & very powerful. Examples: Smart Phones.

 On complexity & performance:
1. Small-scale:

 Simple in application need
 Performance not time-critical.
 Built around low performance& low cost 8 or 16 bit µp/µc. Example: an electronic toy

2. Medium-scale:

 Slightly complex in hardware & firmware requirement.
 Built around medium performance & low cost 16 or 32 bit µp/µc.
 Usually contain operating system.
 Examples: Industrial machines.

3. Large-scale:

 Highly complex hardware & firmware.
 Built around 32 or 64 bit RISC µp/µc or PLDs or Multicore -Processors.
 Response is time-critical.
 Examples: Mission critical applications.

 On deterministic behavior:

 This classification is applicable for “Real Time” systems.
 The task execution behavior for an embedded system may be deterministic or non-

deterministic.
 Based on execution behavior Real Time embedded systems are divided into Hard and

Soft.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 4 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 On triggering

 Embedded systems which are “Reactive” in nature canbe based on triggering.
 Reactive systems can be:

 Event triggered
 Time triggered

APPLICATION OF EMBEDDED SYSTEM

The application areas and the products in the embedded domain are countless.

 1. Consumer Electronics: Camcorders, Cameras.

 2. Household appliances: Washing machine, Refrigerator.

3. Automotive industry: Anti-lock breaking system(ABS), engine control.

4. Home automation & security systems: Air conditioners, sprinklers, fire alarms.

 5. Telecom: Cellular phones, telephone switches.

 6. Computer peripherals: Printers, scanners.

 7. Computer networking systems: Network routers and switches.

8. Healthcare: EEG, ECG machines.

9. Banking & Retail: Automatic teller machines, point of sales.

 10. Card Readers: Barcode, smart card readers.

PURPOSE OF EMBEDDED SYSTEM

1. Data Collection/Storage/Representation
 Embedded system designed for the purpose of data collection performs acquisition

of data from the external world.
 Data collection is usually done for storage, analysis, manipulation and

transmission.
 Data can be analog or digital.
 Embedded systems with analog data capturing techniques collect data directly in

the form of analog signal whereas embedded systems with digital data collection

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 5 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

mechanism converts the analog signal to the digital signal using analog to digital
converters.

 If the data is digital it can be directly captured by digital embedded system.
 A digital camera is a typical example of an embedded System with data

collection/storage/representation of data.
 Images are captured and the captured image may be stored within the memory of

the camera. The captured image can also be presented to the user through a graphic
LCD unit.

2. Data communication
 Embedded data communication systems are deployed inapplications from complex

satellite communication to simple home networking systems.
 The transmission of data is achieved either by a wire-lin medium or by a wire-less

medium. Data can either be transmitted by analog means or by digital means.
 Wireless modules-Bluetooth, Wi-Fi.
 Wire-line modules-USB, TCP/IP.
 Network hubs, routers, switches are examples of dedicated data transmission

embedded systems.

3. Data signal processing
 Embedded systems with signal processing functionalities are employed in

applications demanding signal processing like speech coding, audio video codec,
transmission applications etc.

 A digital hearing aid is a typical example of an embedded system employing data
processing. Digital hearing aid improves the hearing capacity of hearing impaired
person.

4. Monitoring
 All embedded products coming under the medical domain are with monitoring

functions. Electro cardiogram machine is intended to do the monitoring of the
heartbeat of a patient but it cannot impose control over the heartbeat.

 Other examples with monitoring function are digital CRO, digital multi-meters, and
logic analyzers.

5. Control

 A system with control functionality contains both sensors and actuators Sensors are
connected to the input port for capturing the changes in environmental variable and
the actuators connected to the output port are controlled according to the changes
in the input variable.

 Air conditioner system used to control the room temperature to a specified limit is
a typical example for CONTROL purpose.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 6 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

6. Application specific user interface

 Buttons, switches, keypad, lights, bells, display units etc are application specific
user interfaces.

 Mobile phone is an example of application specific user interface.
 In mobile phone the user interface is provided through the keypad, system speaker,

vibration alert etc.

CORE OF EMBEDDED SYSTEMS

Embedded systems are domain and application specific and are built around a central core. The
core of the embedded system falls into any of the following categories:

1. General purpose and Domain Specific Processors Microprocessors Microcontrollers Digital
Signal Processors.

2. Application Specific Integrated Circuits. (ASIC)

3. Programmable logic devices(PLD’s)

 4. Commercial off-the-shelf components (COTs)

GENERAL PURPOSE AND DOMAIN SPECIFIC PROCESSOR.

 • Almost 80% of the embedded systems are processor/ controller based.

 • The processor may be microprocessor or a microcontroller or digital signal processor, depending

on the domain and application.

Microprocessors

 A microprocessor is a silicon chip representing a central processing unit.
 A microprocessor is a dependent unit and it requires the combination of other hardware

like memory, timer unit, and interrupts controller, etc. for proper functioning.

 Developers of microprocessors.

 Intel – Intel 4004 – November 1971(4-bit).
 Intel – Intel 4040. o Intel – Intel 8008 – April 1972.
 Intel – Intel 8080 – April 1974(8-bit).

 Motorola – Motorola 6800.
 Intel – Intel 8085 – 1976.

 Zilog - Z80 – July 1976.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 7 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 Architectures used for processor design are Harvard or VonNeumann.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 8 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Microcontrollers

 A microcontroller is a highly integrated chip that contains aCPU, scratch pad RAM, special
and general purpose register arrays,on chip ROM/FLASH memory for program storage ,
timer and interrupt control units and dedicated I/O ports.

 Texas Instrument’s TMS 1000 Is considered as the world’s first microcontroller.

 Some embedded system application require only 8 bit controllers whereas some requiring
superior performance and computational needs demand 16/32 bit controllers.

 The instruction set of a microcontroller can be RISC or CISC.
 Microcontrollers are designed for either general purpose application requirement or

domain specific application requirement.

 Digital Signal Processors

 DSP are powerful special purpose 8/16/32 bit microprocessor designed to meet the
computational demands and power constraints of today’s embedded audio, video and

communication applications. DSP are 2 to 3 times faster than general purpose
microprocessors in signal processing applications.

 This is because of the architectural difference between DSP and general purpose
microprocessors.

 DSPs implement algorithms in hardware which speeds up the execution whereas general
purpose processor implement the algorithm in software and the speed of execution depends
primarily on the clock for the processors.

 DSP includes following key units:
 i. Program memory: It is a memory for storing the program required by DSP to process

the data. ii. Data memory: It is a working memory for storing temporary variables and
data/signal to be processed.

 iii. Computational engine: It performs the signal processing in accordance with the stored
program memory computational engine incorporated many specialized arithmetic units and
each of them operates simultaneously to increase the execution speed. It also includes
multiple hardware shifters for shifting operands and saves execution time.

 iv. I/O unit: It acts as an interface between the outside world and DSP. It is responsible for
capturing signals to be processed and delivering the processed signals.

 Examples: Audio video signal processing, telecommunication and multimedia
applications. SOP(Sum of Products) calculation, convolution, FFT(Fast Fourier
Transform), DFT(Discrete Fourier Transform), etc are some of the operation performed by
DSP.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 9 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Application Specific Integrated Circuits. (ASIC)

 ASICs is a microchip design to perform a specific and unique applications.
 Because of using single chip for integrates several functions there by reduces the system

development cost.

 Most of the ASICs are proprietary (which having some trade name) products, it is referred
as Application Specific Standard Products(ASSP).

 As a single chip ASIC consumes a very small area in the total system.

 Thereby helps in the design of smaller system with high capabilities or functionalities.
 The developers of such chips may not be interested in revealing the internal detail of it .

Programmable logic devices(PLD’s)

 A PLD is an electronic component. It used to build digital circuits which are reconfigurable.

 A logic gate has a fixed function but a PLD does not have a defined function at the time of
manufacture.

 PLDs offer customers a wide range of logic capacity, features, speed, voltage
characteristics. PLDs can be reconfigured to perform any number of functions at any time.

 A variety of tools are available for the designers of PLDswhich are inexpensive and help
to develop, simulate and test the designs.

PLDs having following two major types.

 1) CPLD(Complex Programmable Logic Device): CPLDs offer much smaller amount of
logic up to 1000 gates.
2) FPGAs(Field Programmable Gate Arrays): It offers highest amount of performance as
well as highest logic density, the most features.

Advantages of PLDs :- 1) PLDs offer customer much more flexibility during the design
cycle.
 2) PLDs do not require long lead times for prototypes or production parts because PLDs
are already on a distributors shelf and ready for shipment.
 3) PLDs can be reprogrammed even after a piece of equipment is shipped to a customer

Commercial off-the-shelf components(COTs)
 1) A Commercial off the Shelf product is one which is used 'asis'.
2) The COTS components itself may be develop around a general purpose or domain
specific processor or an ASICs or a PLDs.

3) The major advantage of using COTS is that they are readily available in the market, are
chip and a developer can cut down his/her development time to a great extent

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 10 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 4) The major drawback of using COTS components in embedded design is that the
manufacturer of the COTS component may withdraw the product or discontinue the
production of the COTS at any time if rapid change in technology occurs.

 Advantages of COTS:
 1) Ready to use
 2) Easy to integrate
3) Reduces development time

 Disadvantages of COTS:
 1) No operational or manufacturing standard (all proprietary)
 2) Vendor or manufacturer may discontinue production of a particular COTS product

SENSORS & ACTUATORS

Sensor

 A Sensor is used for taking Input

 It is a transducer that converts energy from one form to another for any measurement or
control purpose Ex. A Temperature sensor

 Actuator

Actuator is used for output. It is a transducer that may be either mechanical or electrical which
converts signals to corresponding physical actions.

 LED (Light Emitting Diode)

 LED is a p-n junction diode and contains a CATHODE and ANODE For functioning the anode
is connected to +ve end of power supply and cathode is connected to –ve end of power supply.
The maximum current flowing through the LED is limited by connecting a RESISTOR in series
between the power supply and LED as shown in the figure below

There are two ways to interface an LED to a microprocessor/microcontroller:

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 11 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 1. The Anode of LED is connected to the port pin and cathode to Ground : In this approach the
port pin sources the current to the LED when it is at logic high(ie. 1).

2. The Cathode of LED is connected to the port pin and Anode to Vcc : In this approach the port
pin sources the current to the LED when it is at logic high (ie. 1). Here the port pin sinks the current
and the LED is turned ON when the port pin is at Logic low (ie. 0)

7-segment display:

A seven-segment display (SSD), or seven-segment indicator, is a form of electronic display

device for displaying decimal numerals that is an alternative to the more complex dot matrix

displays.Seven-segment displays are widely used in digital clocks, electronic meters, basic

calculators, and other electronic devices that display numerical information.

The seven elements of the display can be lit in different combinations to represent the Arabic

numerals. Often the seven segments are arranged in an oblique (slanted) arrangement, which aids

readability. In most applications, the seven segments are of nearly uniform shape and size (usually

elongated hexagons, though trapezoids and rectangles can also be used), though in the case

of adding machines, the vertical segments are longer and more oddly shaped at the ends in an effort

to further enhance readability.

The numerals 6 and 9 may be represented by two different glyphs on seven-segment displays, with

or without a 'tail'.[2][3] The numeral 7 also has two versions, with or without segment F.[4]

The seven segments are arranged as a rectangle of two vertical segments on each side with one

horizontal segment on the top, middle, and bottom. Additionally, the seventh segment bisects the

rectangle horizontally. There are also fourteen-segment displays and sixteen-segment

displays (for full alphanumerics); however, these have mostly been replaced by dot matrix

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Numeral_system
https://en.wikipedia.org/wiki/Dot_matrix_display
https://en.wikipedia.org/wiki/Dot_matrix_display
https://en.wikipedia.org/wiki/Digital_clock
https://en.wikipedia.org/wiki/Arabic_numerals
https://en.wikipedia.org/wiki/Arabic_numerals
https://en.wikipedia.org/wiki/Oblique_type
https://en.wikipedia.org/wiki/Hexagon
https://en.wikipedia.org/wiki/Trapezoid
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Adding_machine
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-N%C3%BChrmann_1991-2
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-N%C3%BChrmann_1991-2
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-Casio_fx-50F_calculator-4
https://en.wikipedia.org/wiki/Fourteen-segment_display
https://en.wikipedia.org/wiki/Sixteen-segment_display
https://en.wikipedia.org/wiki/Sixteen-segment_display
https://en.wiktionary.org/wiki/alphanumeric

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 12 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

displays. Twenty-two segment displays capable of displaying the full ASCII character set[5] were

briefly available in the early 1980s, but did not prove popular.

The segments of a 7-segment display are referred to by the letters A to G, where the

optional decimal point (an "eighth segment", referred to as DP) is used for the display of non-

integer numbers.

Optical coupler:

An optical coupler, also called opto-isolator, optocoupler, opto coupler, photocoupler or optical

isolator, is a passive optical component that can combine or split transmission data (optical power)

from optical fibers. It is an electronic device which is designed to transfer electrical signals by

using light waves in order to provide coupling with electrical isolation between its input and output.

The main purpose of an optocoupler is to prevent rapidly changing voltages or high voltages on

one side of a circuit from distorting transmissions or damaging components on the other side of

the circuit. An optocoupler contains a light source often near an LED which converts electrical

input signal into light, a closed optical channel and a photosensor, which detects incoming light

and either modulates electric current flowing from an external power supply or generates electric

energy directly. The sensor can either be a photoresistor, a silicon-controlled rectifier, a

photodiode, a phototransistor or a triac.

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Seven-segment_display#cite_note-5
https://en.wikipedia.org/wiki/Decimal_point

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 13 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Applications for Optocouplers:

Photoresistor-based opto-isolators are the slowest type of optocouplers, but also the most linear

isolators and are used in the audio and music industry. Most opto-isolators available use bipolar

silicon phototransistor sensors and reach medium data transfer speed, which is enough for

applications like electroencephalography. High speed opto-isolators are used in computing and

communications applications. Other industrial applications include photocopiers, industrial

automation, professional light measurement instruments and auto-exposure meters.

Relay :

A relay is an electrically operated switch. Many relays use an electromagnet to mechanically

operate a switch, but other operating principles are also used, such as solid-state relays. Relays are

used where it is necessary to control a circuit by a separate low-power signal, or where several

circuits must be controlled by one signal. The first relays were used in long

distance telegraphcircuits as amplifiers: they repeated the signal coming in from one circuit and

re-transmitted it on another circuit. Relays were used extensively in telephone exchanges and early

computers to perform logical operations. A type of relay that can handle the high power required

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Electric
https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Electromagnet
https://en.wikipedia.org/wiki/Solid-state_relay
https://en.wikipedia.org/wiki/Electrical_telegraph

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 14 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

to directly control an electric motor or other loads is called a contactor. Solid-state relays control

power circuits with no moving parts, instead using a semiconductor device to perform switching.

Relays with calibrated operating characteristics and sometimes multiple operating coils are used

to protect electrical circuits from overload or faults; in modern electric power systems these

functions are performed by digital instruments still called "protective relays".

Magnetic latching relays require one pulse of coil power to move their contacts in one direction,

and another, redirected pulse to move them back. Repeated pulses from the same input have no

effect. Magnetic latching relays are useful in applications where interrupted power should not be

able to transition the contacts.

Magnetic latching relays can have either single or dual coils. On a single coil device, the relay will

operate in one direction when power is applied with one polarity, and will reset when the polarity

is reversed. On a dual coil device, when polarized voltage is applied to the reset coil the contacts

will transition. AC controlled magnetic latch relays have single coils that employ steering diodes

to differentiate between operate and reset commands.

Buzzer :

A buzzer or beeper is an audio signalling device, which may be mechanical, electromechanical,

or piezoelectric (piezo for short). Typical uses of buzzers and beepers include alarm

devices, timers, and confirmation of user input such as a mouse click or keystroke.

Types of Buzzers

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Contactor
https://en.wikipedia.org/wiki/Solid-state_relay
https://en.wikipedia.org/wiki/Moving_parts
https://en.wikipedia.org/wiki/Protective_relay
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Electromechanics
https://en.wikipedia.org/wiki/Piezoelectricity
https://en.wikipedia.org/wiki/Alarm_devices
https://en.wikipedia.org/wiki/Alarm_devices
https://en.wikipedia.org/wiki/Timer

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 15 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

There are several different kinds of buzzers. At Future Electronics we stock many of the most

common types categorized by Type, Sound Level, Frequency, Rated Voltage, Dimension and

Packaging Type. The parametric filters on our website can help refine your search results

depending on the required specifications.

The most common sizes for Sound Level are 80 dB, 85 dB, 90 dB and 95 dB. We also carry buzzers

with Sound Level up to 105 dB. There are several types available including Electro-Acoustic,

Electromagnetic, Electromechanic, Magnetic and Piezo, among others.

Applications for Buzzers:

Typical uses of buzzers include:

 Alarm devices

 Timers

 Confirmation of user input (ex: mouse click or keystroke)

 Electronic metronomes

 Annunciator panels

 Game shows

 Sporting events

 Household appliances

Push button switch:

A push-button (also spelled pushbutton) or simply button is a simple switch mechanism for

controlling some aspect of a machine or a process. Buttons are typically made out of hard material,

usually plastic or metal.[1] The surface is usually flat or shaped to accommodate the human finger

or hand, so as to be easily depressed or pushed. Buttons are most often biased switches, although

many un-biased buttons (due to their physical nature) still require a spring to return to their un-

pushed state. Terms for the "pushing" of a button include pressing, depressing, mashing, hitting,

and punching. The "push-button" has been utilized in calculators, push-button telephones, kitchen

appliances, and various other mechanical and electronic devices, home and commercial.

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Electrical_switch
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Process_(engineering)
https://en.wikipedia.org/wiki/Plastic
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Push-button#cite_note-1
https://en.wikipedia.org/wiki/Switch#Biased_switches
https://en.wikipedia.org/wiki/Spring_(device)
https://en.wikipedia.org/wiki/Calculators
https://en.wikipedia.org/wiki/Push-button_telephone
https://en.wikipedia.org/wiki/Kitchen_appliances
https://en.wikipedia.org/wiki/Kitchen_appliances

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 16 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

In industrial and commercial applications, push buttons can be connected together by a mechanical

linkage so that the act of pushing one button causes the other button to be released. In this way, a

stop button can "force" a start button to be released. This method of linkage is used in simple

manual operations in which the machine or process has no electrical circuits for control.

Red pushbuttons can also have large heads (called mushroom heads) for easy operation and to

facilitate the stopping of a machine. These pushbuttons are called emergency stop buttons and for

increased safety are mandated by the electrical code in many jurisdictions. This large mushroom

shape can also be found in buttons for use with operators who need to wear glovesfor their work

and could not actuate a regular flush-mounted push button.

Communication Interface (onboard and external types):

For any embedded system, the communication interfaces can broadly classified into:

1. Onboard Communication Interfaces :These are used for internal communication of the

embedded system i.e: communication between different components present on the system.

Common examples of onboard interfaces are:

 Inter Integrated Circuit (I2C)

 Serial Peripheral Interface (SPI)

 Universal Asynchronous Receiver Transmitter (UART)

 1-Wire Interface

 Parallel Interface

 Inter Integrated Circuit (I2C)

I2C was originally developed in 1982 by Philips for various Philips chips. The original spec

allowed for only 100kHz communications, and provided only for 7-bit addresses, limiting the

number of devices on the bus to 112 (there are several reserved addresses, which will never be

used for valid I2C addresses). In 1992, the first public specification was published, adding a

400kHz fast-mode as well as an expanded 10-bit address space. Much of the time (for instance, in

the ATMega328 device on many Arduino-compatible boards) , device support for I2C ends at this

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Emergency_stop
https://en.wikipedia.org/wiki/Glove
https://en.wikipedia.org/w/index.php?title=Flush-mount&action=edit&redlink=1

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 17 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

point. There are three additional modes specified: fast-mode plus, at 1MHz; high-speed mode, at

3.4MHz; and ultra-fast mode, at 5MHz.

Each I2C bus consists of two signals: SCL and SDA. SCL is the clock signal, and SDA is the data

signal. The clock signal is always generated by the current bus master; some slave devices may

force the clock low at times to delay the master sending more data (or to require more time to

prepare data before the master attempts to clock it out). This is called “clock stretching” and is

described on the protocol page.

Unlike UART or SPI connections, the I2C bus drivers are “open drain”, meaning that they can

pull the corresponding signal line low, but cannot drive it high. Thus, there can be no bus

contention where one device is trying to drive the line high while another tries to pull it low,

eliminating the potential for damage to the drivers or excessive power dissipation in the

system.Each signal line has a pull-up resistor on it, to restore the signal to high when no device is

asserting it low.

Serial Data Line (SDA)

The Serial Data Line (SDA) is the data line (of course!). All the data transfer among the devices

takes place through this line.

Serial Clock Line (SCL)

The Serial Clock Line (SCL) is the serial clock (obviously!). I2C is a synchronous protocol, and

hence, SCL is used to synchronize all the devices and the data transfer together. We’ll learn how

it works a little later in this post.

no
tes

4f
ree

.in

http://en.wikipedia.org/wiki/Open_collector
https://learn.sparkfun.com/tutorials/pull-up-resistors

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 18 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

SPI BUS :

Serial Peripheral Interface, or SPI, is a very common communication protocol used for two-way

communication between two devices. A standard SPI bus consists of 4

signals, Master Out Slave In (MOSI), Master In Slave Out (MISO), the clock (SCK),

and Slave Select (SS). Unlike an asynchronous serial interface, SPI is not symmetric. An SPI bus

has one master and one or more slaves. The master can talk to any slave on the bus, but each slave

can only talk to the master. Each slave on the bus must have it's own unique slave select signal.

The master uses the slave select signals to select which slave it will be talking to. Since SPI also

includes a clock signal, both devices don't need to agree on a data rate beforehand. The only

requirement is that the clock is lower than the maximum frequency for all devices involved.

Each SPI transfer is full-duplex, meaning that data is sent from the master to the slave and from

the slave to the master at the same time. There is no way for a slave to opt-out of sending data

when the master makes a transfer, however, devices will send dummy bytes (usually all 1's or all

0's) when communication should be one way. If the master is reading data in for a slave, the slave

will know to ignore the data being sent by the master.

Devices that use SPI typically will send/receive multiple bytes each time the SS signal goes low.

This way the SS signal acts as a way to frame a transmission. For example, if you had a flash

memory that had an SPI bus and you want to read some data, the SS signal would go low, the

no
tes

4f
ree

.in

https://embeddedmicro.com/blogs/tutorials/asynchronous-serial

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 19 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

master would send the command to read memory at a certain address, and as long as the master

kept SS low and toggling SCK the flash memory would keep sending out data. Once SS returned

high the flash memory knows to end the read command.

Since the MISO signal can be connected to multiple devices, each device will only drive the line

when its SS signal is low. This is shown by the grey area.

Advantages of SPI:

 It’s faster than asynchronous serial

 The receive hardware can be a simple shift register

 It supports multiple slaves

Disadvantages of SPI:

 It requires more signal lines (wires) than other communications methods

 The communications must be well-defined in advance (you can’t send random amounts

of data whenever you want)

 The master must control all communications (slaves can’t talk directly to each other)

 It usually requires separate SS lines to each slave, which can be problematic if numerous

slaves are needed.

UART

In UART communication, two UARTs communicate directly with each other. The transmitting

UART converts parallel data from a controlling device like a CPU into serial form, transmits it in

serial to the receiving UART, which then converts the serial data back into parallel data for the

receiving device. Only two wires are needed to transmit data between two UARTs. Data flows

from the Tx pin of the transmitting UART to the Rx pin of the receiving UART:

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 20 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

UARTs transmit data asynchronously, which means there is no clock signal to synchronize the

output of bits from the transmitting UART to the sampling of bits by the receiving UART. Instead

of a clock signal, the transmitting UART adds start and stop bits to the data packet being

transferred. These bits define the beginning and end of the data packet so the receiving UART

knows when to start reading the bits.

When the receiving UART detects a start bit, it starts to read the incoming bits at a

specific frequency known as the baud rate. Baud rate is a measure of the speed of data

transfer, expressed in bits per second (bps). Both UARTs must operate at about the same baud rate.

The baud rate between the transmitting and receiving UARTs can only differ by about 10% before

the timing of bits gets too far off.

1-wire interface:

A 1994 application note explained that the only serial-port interface options for 1-Wire devices

were microcontroller port pins, UARTs, and UART-based COM ports. Since that time special

driver chips have been developed for direct connection to a UART, I²C bus, or USB port.

Meanwhile, the number of 1-Wire devices also grew to a long list.These various developments

made it necessary to update the earlier documentation. Instead of merging the specifics of all

relevant information into a single document, this new document refers the reader to other

application notes whenever possible.

The first 1-Wire devices, the DS199x series, were produced in SRAM technology. Next the

nonvolatile EPROM technology became available, and the DS198x and DS250x series devices

were released. These EPROM devices need a 12V programming pulse and are not erasable. The

next leap forward was EEPROM technology, which allows programming and erasing at 5V or

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 21 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

less. EEPROM technology is found in DS197x, DS243x and DS28Exx series devices. To ensure

proper power, EEPROM devices may need a master that supports "strong pullup", a feature that

temporarily bypasses the 1-Wire pullup resistor with a low-impedance path. The extra power is

needed for write cycles and, in case of the DS1977, also for reading. Besides EEPROM devices,

the strong pullup also powers 1-Wire temperature sensors and special functions such as a SHA-1

engine, which is found in secure 1-Wire devices. Temperature logger iButtons® use SRAM

technology and, therefore, do not have any special, external power requirements.

General Information:

1-Wire is the only voltage-based digital system that works with two contacts, data and ground, for

half-duplex bidirectional communication. A 1-Wire system consists of a single 1-Wire master and

one or more 1-Wire slaves. The 1-Wire concept relies both on a master that initiates digital

communication, and on self-timed 1-Wire slave devices that synchronize to the master's signal.

The timing logic of master and slave must measure and generate digital pulses of various widths.

When idle, a high-impedance path between the 1-Wire bus and the operating voltage puts the 1-

Wire bus in the logic-high state. Each device on the bus must be able to pull the 1-Wire bus low

at the appropriate time by using an open-drain output (wired AND). If a transaction needs to be

suspended for any reason, the bus must be left in the idle state so the transaction can resume.

Parallel port:

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 22 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

A parallel port is a type of interface found on computers (personal and otherwise) for connecting

peripherals. The name refers to the way the data is sent; parallel ports send multiple bits of data at

once, in parallel communication, as opposed to serial interfaces that send bits one at a time. To do

this, parallel ports require multiple data lines in their cables and port connectors, and tend to be

larger than contemporary serial ports which only require one data line.

There are many types of parallel ports, but the term has become most closely associated with

the printer port or Centronics port found on most personal computers from the 1970s through the

2000s. It was an industry de factostandard for many years, and was finally standardized as IEEE

1284 in the late 1990s, which defined the Enhanced Parallel Port (EPP) and Extended Capability

Port (ECP) bi-directional versions. Today, the parallel port interface is virtually non-existent

because of the rise of Universal Serial Bus (USB) devices, along with network printing

using Ethernet and Wi-Fi connected printers.

The parallel port interface was originally known as the Parallel Printer Adapter on IBM PC-

compatible computers. It was primarily designed to operate printers that used IBM's eight-

bit extended ASCII character set to print text, but could also be used to adapt other peripherals.

Graphical printers, along with a host of other devices, have been designed to communicate with

the system.

External communication interface:

In telecommunications, RS-232, Recommended Standard 232[1] is a standard introduced in

1960[2] for serial communicationtransmission of data. It formally defines the signals connecting

between a DTE (data terminal equipment) such as a computer terminal, and a DCE (data circuit-

terminating equipment or data communication equipment), such as a modem. The RS-232

standard had been commonly used in computer serial ports. The standard defines the electrical

characteristics and timing of signals, the meaning of signals, and the physical size and pinout of

connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal

Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange,

issued in 1997.

An RS-232 serial port was once a standard feature of a personal computer, used for connections

to modems, printers, mice, data storage, uninterruptible power supplies, and other peripheral

devices. RS-232, when compared to later interfaces such as RS-422, RS-485 and Ethernet, has

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Hardware_interface
https://en.wikipedia.org/wiki/Computers
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Parallel_communication
https://en.wikipedia.org/wiki/Serial_interface
https://en.wikipedia.org/wiki/Parallel_port#Centronics
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/IEEE_1284
https://en.wikipedia.org/wiki/IEEE_1284
https://en.wikipedia.org/wiki/Enhanced_Parallel_Port
https://en.wikipedia.org/wiki/Extended_Capability_Port
https://en.wikipedia.org/wiki/Extended_Capability_Port
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/PC_compatible
https://en.wikipedia.org/wiki/PC_compatible
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Dot_matrix_printing#Personal_computers
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Extended_ASCII
https://en.wikipedia.org/wiki/Character_set
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Recommended_Standard_(EIA)
https://en.wikipedia.org/wiki/RS-232#cite_note-Metering_Glossary-1
https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/RS-232#cite_note-CAM_1974-2
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Data_terminal_equipment
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/Data_circuit-terminating_equipment
https://en.wikipedia.org/wiki/Data_circuit-terminating_equipment
https://en.wikipedia.org/wiki/Data_communication_equipment
https://en.wikipedia.org/wiki/Modem
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Serial_port
https://en.wikipedia.org/wiki/Pinout
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Modem
https://en.wikipedia.org/wiki/Printer_(computing)
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Uninterruptible_power_supplies
https://en.wikipedia.org/wiki/RS-422
https://en.wikipedia.org/wiki/RS-485
https://en.wikipedia.org/wiki/Ethernet

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 23 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

lower transmission speed, short maximum cable length, large voltage swing, large standard

connectors, no multipoint capability and limited multidrop capability. In modern personal

computers, USBhas displaced RS-232 from most of its peripheral interface roles. Many computers

no longer come equipped with RS-232 ports (although some motherboards come equipped with a

COM port header that allows the user to install a bracket with a DE-9 port) and must use either an

external USB-to-RS-232 converter or an internal expansion card with one or more serial ports to

connect to RS-232 peripherals. Nevertheless, thanks to their simplicity and past ubiquity, RS-232

interfaces are still used—particularly in industrial machines, networking equipment, and scientific

instruments where a short-range, point-to-point, low-speed wired data connection is adequate.

USB:

USB, short for Universal Serial Bus, is a standard type of connection for many different kinds of

devices. Generally, USB refers to the types of cables and connectors used to connect these many

types of external devices to computers.

More About USB

The Universal Serial Bus standard has been extremely successful. USB ports and cables are used

to connect hardware such as printers, scanners, keyboards, mice, flash drives, external hard drives,

joysticks, cameras, and more to computers of all kinds, including desktops, tablets, laptops,

netbooks, etc.

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/Motherboard
https://www.lifewire.com/what-is-a-keyboard-2618153
https://www.lifewire.com/what-is-a-mouse-2618156
https://www.lifewire.com/what-is-a-flash-drive-2625794
https://www.lifewire.com/what-is-a-hard-disk-drive-2618152
https://www.lifewire.com/what-is-a-tablet-4157433

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 24 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

In fact, USB has become so common that you'll find the connection available on nearly any

computer-like device such as video game consoles, home audio/visual equipment, and even in

many automobiles.

Many portable devices, like smartphones, ebook readers, and small tablets, use USB primarily for

charging. USB charging has become so common that it's now easy to find replacement electrical

outlets at home improvement stores with USB ports built it, negating the need for a USB power

adapter.

USB Versions

There have been three major USB standards, 3.1 being the newest:

 USB 3.1: Called Superspeed+, USB 3.1 compliant devices are able to transfer data at 10

Gbps (10,240 Mbps).

 USB 3.0: Called SuperSpeed USB, USB 3.0 compliant hardware can reach a maximum

transmission rate of 5 Gbps (5,120 Mbps).

 USB 2.0: Called High-Speed USB, USB 2.0 compliant devices can reach a maximum

transmission rate of 480 Mbps.

 USB 1.1: Called Full Speed USB, USB 1.1 devices can reach a maximum transmission rate

of 12 Mbps.

Most USB devices and cables today adhere to USB 2.0, and a growing number to USB 3.0.

Important: The parts of a USB-connected system, including the host (like a computer), the cable,

and the device, can all support different USB standards so long as they are physically compatible.

However, all parts must support the same standard if you want it to achieve the maximum data rate

possible.

no
tes

4f
ree

.in

https://www.lifewire.com/what-is-usb-3-0-2626038
https://www.lifewire.com/what-is-usb-2-0-2626037
https://www.lifewire.com/what-is-usb-1-1-2626036

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 25 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

IEEE1394:

IEEE 1394, High Performance Serial Bus, is an electronics standard for connecting devices to your

personal computer. IEEE 1394 provides a single plug-and-socket connection on which up to 63

devices can be attached with data transfer speeds up to 400 Mbps (megabit s per second). The

standard describes a serial bus or pathway between one or more peripheral devices and your

computer's microprocessor . Many peripheral devices now come equipped to meet IEEE 1394.

Two popular implementations of IEEE 1394 are Apple's FireWire and Sony's i.LINK . IEEE 1394

implementations provide:

 A simple common plug-in serial connector on the back of your computer and on many different

types of peripheral devices

 A thin serial cable rather than the thicker parallel cable you now use to your printer, for example

 A very high-speed rate of data transfer that will accommodate multimedia applications (100

and 200 megabits per second today; with much higher rates later)

 Hot-plug and plug and play capability without disrupting your computer

 The ability to chain devices together in a number of different ways without terminators or

complicated set-up requirements

no
tes

4f
ree

.in

https://searchnetworking.techtarget.com/definition/Mbps
https://whatis.techtarget.com/definition/megabit
https://whatis.techtarget.com/definition/serial
https://searchstorage.techtarget.com/definition/bus
https://whatis.techtarget.com/definition/microprocessor-logic-chip
https://searchnetworking.techtarget.com/definition/FireWire
https://whatis.techtarget.com/definition/iLINK
https://searchwindowsserver.techtarget.com/definition/Plug-and-Play-PnP

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 26 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Working

There are two levels of interface in IEEE 1394, one for the backplane bus within the computer and

another for the point-to-point interface between device and computer on the serial cable. A simple

bridge connects the two environments. The backplane bus supports 12.5, 25, or 50 megabits per

second data transfer. The cable interface supports 100, 200, or 400 megabits per second. Each of

these interfaces can handle any of the possible data rates and change from one to another as needed.

IrDA

 IrDA (Infrared Data Association)

 Bluetooth 2.4 GHz

 802.11 WLAN and 802.11b WiFi

 ZigBee 900 MHz

 Used in mobile phones, digital cameras, keyboard, mouse, printers to communicate to

laptop computer and for data and pictures download and synchronization.

 Used for control TV, air-conditioning, LCD projector, VCD devices from a distance

 Use infrared (IR) after suitable modulation of the data bits.

 Communicates over a line of sight Phototransistor receiver for infrared rays

IrDA protocol suite

 Supports data transfer rates of up to 4 Mbps

 Supports bi-directional serial communication over viewing angle between ± 15 ° and

distance of nearly 1 m At 5 m, the IR transfer data can be up to data transfer rates of 75

kbps

 Should be no obstructions or wall in between the source and receiver

Bluetooth

Bluetooth is a wireless technology standard for exchanging data over short distances (using short-

wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz) from fixed and mobile

devices, and building personal area networks(PANs). Invented by telecom vendor Ericsson in

1994, it was originally conceived as a wireless alternative to RS-232data cables.

no
tes

4f
ree

.in

https://whatis.techtarget.com/definition/backplane
https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/UHF
https://en.wikipedia.org/wiki/Radio_waves
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Ericsson
https://en.wikipedia.org/wiki/RS-232

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 27 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Bluetooth is managed by the Bluetooth Special Interest Group (SIG), which has more than 30,000

member companies in the areas of telecommunication, computing, networking, and consumer

electronics.[5] The IEEE standardized Bluetooth as IEEE 802.15.1, but no longer maintains the

standard. The Bluetooth SIG oversees development of the specification, manages the qualification

program, and protects the trademarks.[6] A manufacturer must meet Bluetooth SIG standards to

market it as a Bluetooth device.

Bluetooth operates at frequencies between 2402 and 2480 MHz, or 2400 and 2483.5 MHz

including guard bands 2 MHz wide at the bottom end and 3.5 MHz wide at the top.[15] This is in

the globally unlicensed (but not unregulated) industrial, scientific and medical (ISM) 2.4 GHz

short-range radio frequency band. Bluetooth uses a radio technology called frequency-hopping

spread spectrum. Bluetooth divides transmitted data into packets, and transmits each packet on one

of 79 designated Bluetooth channels. Each channel has a bandwidth of 1 MHz. It usually performs

800 hops per second, with Adaptive Frequency-Hopping (AFH) enabled. Bluetooth Low

Energy uses 2 MHz spacing, which accommodates 40 channels.

Originally, Gaussian frequency-shift keying (GFSK) modulation was the only modulation scheme

available. Since the introduction of Bluetooth 2.0+EDR, π/4-DQPSK(differential quadrature phase

shift keying) and 8DPSK modulation may also be used between compatible devices. Devices

functioning with GFSK are said to be operating in basic rate (BR) mode where an instantaneous bit

rate of 1 Mbit/s is possible. The term Enhanced Data Rate (EDR) is used to describe π/4-DPSK

and 8DPSK schemes, each giving 2 and 3 Mbit/s respectively. The combination of these (BR and

EDR) modes in Bluetooth radio technology is classified as a "BR/EDR radio".

Wifi :

Wi-Fi is a technology for wireless local area networking with devices based on the IEEE

802.11standards. Wi-Fi is a trademark of the Wi-Fi Alliance, which restricts the use of the

term Wi-Fi Certified to products that successfully complete interoperability certification testing.

Devices that can use Wi-Fi technology include personal computers, video-game

consoles, phones and tablets, digital cameras, smart TVs, digital audio players and modern

printers. Wi-Fi compatible devices can connect to the Internet via a WLAN and a wireless access

point. Such an access point (or hotspot) has a range of about 20 meters (66 feet) indoors and a

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group
https://en.wikipedia.org/wiki/Bluetooth#cite_note-autogenerated1-5
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
https://en.wikipedia.org/wiki/Bluetooth#cite_note-6
https://en.wikipedia.org/wiki/Bluetooth_Special_Interest_Group#Qualification
https://en.wikipedia.org/wiki/Guard_band
https://en.wikipedia.org/wiki/Bluetooth#cite_note-Radio-Electronics.com-15
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Adaptive_frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
https://en.wikipedia.org/wiki/Gaussian_frequency-shift_keying
https://en.wikipedia.org/wiki/DQPSK
https://en.wikipedia.org/wiki/Bit_rate
https://en.wikipedia.org/wiki/Bit_rate
https://en.wikipedia.org/wiki/Data_rate_units
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/Wi-Fi_Alliance
https://en.wikipedia.org/wiki/Interoperability
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Smart_TV
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Hotspot_(Wi-Fi)

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 28 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

greater range outdoors. Hotspot coverage can be as small as a single room with walls that block

radio waves, or as large as many square kilometres achieved by using multiple overlapping access

points.

Wi-Fi most commonly uses the 2.4 gigahertz (12 cm) UHF and 5.8 gigahertz

(5 cm) SHF ISM radio bands. Anyone within range with a wireless modem can attempt to access

the network; because of this, Wi-Fi is more vulnerable to attack (called eavesdropping) than wired

networks. Wi-Fi Protected Access is a family of technologies created to protect information

moving across Wi-Fi networks and includes solutions for personal and enterprise networks.

Security features of Wi-Fi Protected Access constantly evolve to include stronger protections and

new security practices as the security landscape change.

Zigbee :

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols

used to create personal area networks with small, low-power digital radios, such as for home

automation, medical device data collection, and other low-power low-bandwidth needs, designed

for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low data

rate, and close proximity (i.e., personal area) wireless ad hoc network.

The technology defined by the Zigbee specification is intended to be simpler and less expensive

than other wireless personal area networks (WPANs), such as Bluetooth or more general wireless

networking such as Wi-Fi. Applications include wireless light switches, home energy monitors,

traffic management systems, and other consumer and industrial equipment that requires short-

range low-rate wireless data transfer.

Its low power consumption limits transmission distances to 10–100 meters line-of-sight,

depending on power output and environmental characteristics. Zigbee devices can transmit data

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/UHF
https://en.wikipedia.org/wiki/Super_high_frequency
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/Wireless_modem
https://en.wikipedia.org/wiki/Eavesdropping
https://en.wikipedia.org/wiki/IEEE_802.15.4
https://en.wikipedia.org/wiki/Specification_(technical_standard)
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Digital_radio
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://en.wikipedia.org/wiki/Wireless_personal_area_network
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Home_energy_monitor
https://en.wikipedia.org/wiki/Line-of-sight_propagation
https://en.wikipedia.org/wiki/File:Wi-Fi.gif

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 29 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

over long distances by passing data through a mesh network of intermediate devices to reach more

distant ones. Zigbee is typically used in low data rate applications that require long battery life and

secure networking (Zigbee networks are secured by 128 bit symmetric encryption keys.) Zigbee

has a defined rate of 250 kbit/s, best suited for intermittent data transmissions from a sensor or

input device.

Zigbee was conceived in 1998, standardized in 2003, and revised in 2006. The name refers to

the waggle dance of honey bees after their return to the beehive.

Typical application areas include:

 Home Entertainment and Control—Home automation such as in QIVICON,[11] smart

lighting,[12] advanced temperature control, safety and security, movies and music

 Wireless sensor networks—Starting with individual sensors like Telosb/Tmote and Iris from

Memsic

 Industrial control

 Embedded sensing

 Medical data collection

 Smoke and intruder warning

 Building automation

 Remote wireless microphone configuration, in Shure Wireless Microphone Systems [13]

General Packet Radio Service:

 GPRS is a packet oriented mobile data service on the 2G and 3G cellular

communication system's global system for mobile communications (GSM). GPRS was

originally standardized by European Telecommunications Standards Institute (ETSI) in

response to the earlier CDPD and i-modepacket-switched cellular technologies. It is now

maintained by the 3rd Generation Partnership Project (3GPP).

GPRS usage is typically charged based on volume of data transferred, contrasting with circuit

switched data, which is usually billed per minute of connection time. Sometimes billing time

is broken down to every third of a minute. Usage above the bundle cap is charged per

megabyte, speed limited, or disallowed.

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Mesh_networking
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Waggle_dance
https://en.wikipedia.org/wiki/Home_automation
https://en.wikipedia.org/wiki/QIVICON
https://en.wikipedia.org/wiki/Zigbee#cite_note-11
https://en.wikipedia.org/wiki/Zigbee#cite_note-12
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Building_automation
https://en.wikipedia.org/wiki/Shure#Wireless_microphone_systems
https://en.wikipedia.org/wiki/Zigbee#cite_note-13
https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/Mobile_data
https://en.wikipedia.org/wiki/2G
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/CDPD
https://en.wikipedia.org/wiki/I-mode
https://en.wikipedia.org/wiki/3rd_Generation_Partnership_Project
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Product_bundling

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 30 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

GPRS is a best-effort service, implying variable throughput and latency that depend on the

number of other users sharing the service concurrently, as opposed to circuit switching, where

a certain quality of service (QoS) is guaranteed during the connection. In 2G systems, GPRS

provides data rates of 56–114 kbit/second.[2G cellular technology combined with GPRS is

sometimes described as 2.5G, that is, a technology between the second (2G) and third (3G)

generations of mobile telephony. It provides moderate-speed data transfer, by using

unused time division multiple access (TDMA) channels in, for example, the GSM system.

GPRS is integrated into GSM Release 97 and newer releases.

MEMORIES

There are different types of memories available to be used in computers as well as embedded

system. This chapter guides the reader through the different types of memories that are available

and can be used and tries to explain their differences in simple words.

TYPES OF MEMORY

 There are three main types of memories, they are

a) RAM (Random Access Memory) It is read write memory.

 Data at any memory location can be read or written.

 It is volatile memory, i.e. retains the contents as long as electricity is supplied.

 Data access to RAM is very fast

b) ROM (Read Only Memory) It is read only memory.

 Data at any memory location can be only read.

 It is non-volatile memory, i.e. the contents are retained even after electricity is switched off

and available after it is switched on. Data access to ROM is slow compared to RAM.

 c) HYBRID It is combination of RAM as well as ROM

 It has certain features of RAM and some of ROM

 Like RAM the contents to hybrid memory can be read and written Like ROM the contents

of hybrid memory are non volatile

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Best-effort
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/2G
https://en.wikipedia.org/wiki/2.5G
https://en.wikipedia.org/wiki/2G
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/Time_division_multiple_access

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 31 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 The following figure gives a classification of different types of memory

TYPES OF RAM

 There are 2 important memory device in the RAM family.

 a) SRAM (Static RAM)

 b) DRAM (Dynamic RAM)

 SRAM (Static RAM)

 It retains the content as long as the power is applied to the chip.

 If the power is turned off then its contents will be lost forever.

 DRAM (Dynamic RAM)

 DRAM has extremely short Data lifetime(usually less than a quarter of second).

 This is true even when power is applied constantly.

 b) A DRAM controller is used to make DRAM behave more like SRAM.

 c) The DRAM controller periodically refreshes the data stored in the DRAM. By

refreshing the data several times a second, the DRAM controller keeps the contents

of memory alive for a long time.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 32 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

TYPES OF ROM

 There are three types of ROM described as follows:

Masked ROM

 a. These are hardwired memory devices found on system. b. It contains pre-programmed

set of instruction and data and it cannot be modified or appended in any way.

b. (it is just like an Audio CD that contains songs pre-written on it and does not allow to

write any other data)

 c. The main advantage of masked ROM is low cost of production.

PROM (PROGRAMMABLE ROM)

a) This memory device comes in an un-programmed state i.e. at the time of purchased it is

in an un-programmed state and it allows the user to write his/her own program or code into

this ROM.

 b) In the un-programmed state the data is entirely made up of 1’s. c) PROMs are also

known as one-time-programmable (OTP) device because any data can be written on it only

once. If the data on the chip has some error and needs to be modified this memory chip has

to be discarded and the modified data has to be written to another new PROM.

EPROM (ERASABLE-AND-PROGRAMABLE ROM)

 a) It is same as PROM and is programmed in same manner as a PROM.

 b) It can be erased and reprogrammed repeatedly as the name suggests.

 c) The erase operation in case of an EPROM is performed by exposing the chip to a source

of ultraviolet light.

 d) The reprogramming ability makes EPROM as essential part of software development

and testing process.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 33 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 TYPES OF HYBRID MEMORY

 There are three types of Hybrid memory devices: EEPROMs

 a. EEPROMs stand for Electrically Erasable and Programmable ROM.

 b. It is same as EPROM, but the erase operation is performed electrically.

 c. Any byte in EEPROM can be erased and rewritten as desired

Flash

a. Flash memory is the most recent advancement in memory technology.

b. Flash memory devices are high density, low cost, nonvolatile, fast (to read, but not to

write), and electrically reprogrammable.

c. Flash is much more popular than EEPROM and is rapidly displacing many of the ROM

devices.

d. Flash devices can be erased only one sector at a time, not byte by byte.

NVRAM

 a. NVRAM is usually just a SRAM with battery backup.

 b. When power is turned on, the NVRAM operates just like any other SRAM but when

power is off, the NVRAM draws enough electrical power from the battery to retain its

content.

 c. NVRAM is fairly common in embedded systems.

 d. It is more expensive than SRAM.

 DIRECT MEMORY ACCESS (DMA)

 DMA is a technique for transferring blocks of data directly between two hardware

devices. In the absence of DMA the processor must read the data from one device and

write it to the other one byte or word at a time. DMA Absence Disadvantage: If the amount

of data to be transferred is large or frequency of transfer is high the rest of the software

might never get a chance to run.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 34 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 DMA Presence Advantage: The DMA Controller performs entire transfer with little help

from the Processor. Working of DMA The Processor provides the DMA Controller with

source and destination address & total number of bytes of the block of data which needs

transfer. After copying each byte each address is incremented & remaining bytes are

reduced by one. When number of bytes reaches zeros the block transfer ends & DMA

Controller sends an Interrupt to Processor.

EMBEDDED FIRMWARE

Embedded firmware is the flash memory chip that stores specialized software running in a chip in

an embedded device to control its functions.

Firmware in embedded systems fills the same purpose as a ROM but can be updated more easily

for better adaptability to conditions or interconnecting with additional equipment.

Hardware makers use embedded firmware to control the functions of various hardware devices

and systems much like a computer’s operating system controls the function of software

applications. Embedded firmware exists in everything from appliances so simple you might not

imagine they had computer control, like toasters, to complex tracking systems in missiles. The

toaster would likely never need updating but the tracking system sometimes does. As the

complexity of a device increases, it often makes sense to use firmware in case of design errors that

an update might correct.

Embedded firmware is used to control the limited, set functions of hardware devices and systems

of greater complexity but still gives more appliance-like usage instead of a series of terminal

commands. Embedded firmware functions are activated by external controls or external actions of

the hardware. Embedded firmware and ROM-based embedded software often have

communication links to other devices for functionality or to address the need for the device to be

adjusted, calibrated or diagnosed or to output log files. It is also through these connections that

someone might attempt embedded device hacking.

Embedded software varies in complexity as much the devices it is used to control.

Although embedded software and embedded firmware are sometimes used synonymously, they

no
tes

4f
ree

.in

https://internetofthingsagenda.techtarget.com/definition/embedded-software
https://whatis.techtarget.com/definition/embedded-device
https://whatis.techtarget.com/definition/firmware
https://internetofthingsagenda.techtarget.com/definition/embedded-software
https://internetofthingsagenda.techtarget.com/definition/embedded-device-hacking

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 35 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

are not exactly the same thing. For example, embedded software may run on ROM chips. Also,

embedded software is often the only computer code running on a piece of hardware while firmware

can also refer to the chip that houses a computer’s EFI or BIOS, which hands over control to an

OS that in turn launches and controls programs.

Other components :

Reset circuit:

Microprocessors are complex, state-driven devices that must start up in a consistent way to

function properly. You can establish proper processor operation by supplying a reset input

that is normally asserted until the system is ready to execute the boot-up firmware. When the

reset signal is deasserted, some subset of the processor's registers (depending on the specific

chip) will be initialized to default values and the processor will start executing from fixed

location (also specific to the chip). It's crucial to design this reset circuit properly to avoid

system lockup, erratic processor operation, and possible corruption of your nonvolatile

memory.

This is all complex enough that many companies now offer integrated circuit reset devices,

commonly referred to as "reset supervisors." Good design practice suggests using these reset

supervisors for most embedded systems because designing discrete reset circuitry is beyond

the expertise of many embedded systems engineers. My personal experience has led me to

rely on reset supervisors exclusively and ignore the various RC, transistor, and diode networks

that are scattered throughout data books and shown in "example" circuits.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 36 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Brownout Protection

Brownout protection inbuilt in them but when connecting a controller to an industry sensor and

controlling devices(which are extremely costly) its better we know what is a brownout and how is

it detected in a microcontroller cause many devices in low to medium scale industry may not be

as immune to brownout as our controller. The brown out can cause one of the three things for a dc

supply system. These things in turn can damage the connected embedded systems.

1. An unregulated direct current supply will produce a lower output voltage for

electronic circuits. The output ripple voltage will decrease in line with the usually reduced

load current.

2. A linear direct current regulated supply will maintain the output voltage unless the

brownout is severe and the input voltage drops below the drop out voltage for the regulator,

at which point the output voltage will fall and high levels of ripple from the

rectifier/reservoir capacitor will appear on the output.

3. A switched-mode power supply which has a regulated output will be affected. As

the input voltage falls, the current draw will increase to maintain the same output voltage

and current, until such a point that the power supply malfunctions.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 37 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Oscillator circuit :

The majority of clock sources for microcontrollers can be grouped into two types: those

based on mechanical resonant devices, such as crystals and ceramic resonators, and those

based on electrical phase-shift circuits such as RC (resistor, capacitor) oscillators. Silicon

oscillators are typically a fully integrated version of the RC oscillator with the added

benefits of current sources, matched resistors and capacitors, and temperature-

compensation circuits for increased stability.

These modules contain all oscillator circuit components and provide a clock signal as a

low-impedance square-wave output. Operation is guaranteed over a range of conditions.

Crystal oscillator modules and fully integrated silicon oscillators are most common. Crystal

oscillator modules provide accuracy similar to discrete component circuits using crystals.

Silicon oscillators are more precise than discrete component RC oscillator circuits, and

many provide comparable accuracy to ceramic resonator-based oscillators.

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 38 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

RTC

A real-time clock (RTC) is a computer clock (most often in the form of an integrated circuit) that

keeps track of the current time.

Although the term often refers to the devices in personal computers, servers and embedded

systems, RTCs are present in almost any electronic device which needs to keep accurate time. A

common RTC used in single-board computers is the DS1307.

Although keeping time can be done without an RTC,[1] using one has benefits:

 Low power consumption[2] (important when running from alternate power)

 Frees the main system for time-critical tasks

 Sometimes more accurate than other methods

RTCs are widely used in many different devices which need accurate time keeping.

 Real-time clocks normally have batteries attached to them that have very long life.

 Therefore, the batteries last a very long time, several years. The battery keeps the RTC

operating, even when there is no power to the microcontroller that is connected up to. So

even if the microcontroller powers off, the RTC can keep operating due to its battery.

Therefore, it can always keep track of the current time and have accurate time, ongoing.

An RTC maintains its clock by counting the cycles of an oscillator – usually an external 32.768kHz

crystal oscillator circuit, an internal capacitor based oscillator, or even an embedded quartz crystal.

Some can detect transitions and count the periodicity of an input that may be connected.

This can enable an RTC to sense the 50/60Hz ripple on a mains power supply, or detect and

accumulate transitions coming from a GPS unit epoch tick. An RTC that does this operates like a

phase locked loop (PLL), shifting its internal clock reference to ‘lock’ it onto the external signal.

If the RTC loses its external reference, it can detect this event (as its PLL goes out of lock) and

free run from its internal oscillator.

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Clock
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Real-time_clock#cite_note-1
https://en.wikipedia.org/wiki/Real-time_clock#cite_note-2

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 39 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

A watchdog timer (WDT):

 WDT is a hardware timer that automatically generates a system reset if the main program

neglects to periodically service it. It is often used to automatically reset an embedded device

that hangs because of a software or hardware fault. Some systems may also refer to it as a

computer operating properly (COP) timer. Many microcontrollers including the embedded

processor have watchdog timer hardware.

The main program typically has a loop that it constantly goes through performing various

functions. The watchdog timer is loaded with an initial value greater than the worst case time

delay through the main program loop. Each time it goes through the main loop the code resets

the watchdog timer (sometimes called “kicking” or “feeding” the dog). If a fault occurs and the

main program does not get back to reset the timer before it counts down, an interrupt is

generated to reset the processor. Used in this way, the watchdog timer can detect a fault on an

unattended embedded device and attempt corrective action with a reset. Typically after reset, a

register can also be read to determine if the watchdog timer generated the reset or if it was a

normal reset. On the mbed this register is called the Reset Source Identification Register

(RSID).

no
tes

4f
ree

.in

EMBEDDED SYSTEM COMPONENTS MODULE-3

SVIT,ECE DEPT 40 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 1 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

EMBEDDED SYSTEM DESIGN CONCEPTS

Characteristics & Quality Attributes Of Embedded Systems

The characteristics of embedded system are different from those of a general purpose computer and so

are its Quality metrics. This chapter gives a brief introduction on the characteristics of an embedded

system and the attributes that are associated with its quality.

CHARACTERISTICS OF EMBEDDED SYSTEM

Following are some of the characteristics of an embedded system that make it different from a

general purpose computer:

1. Application and Domain specific

• An embedded system is designed for a specific purpose only. It will not do any other task.

• Ex. A washing machine can only wash, it cannot cook

• Certain embedded systems are specific to a domain: ex. A hearing aid is an application that

belongs to the domain of signal processing.

2. Reactive and Real time

• Certain Embedded systems are designed to react to the events that occur in the nearby

environment. These events also occur real-time.

• Ex. An air conditioner adjusts its mechanical parts as soon as it gets a signal from its sensors

to increase or decrease the temperature when the user operates it using a remote control.

• An embedded system uses Sensors to take inputs and has actuators to bring out the required

functionality.

3. Operation in harsh environment

• Certain embedded systems are designed to operate in harsh environments like very high

temperature of the deserts or very low temperature of the mountains or extreme rains.

• These embedded systems have to be capable of sustaining the environmental conditions it

is designed to operate in.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 2 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

4. Distributed systems

• Certain embedded systems are part of a larger system and thus form components of a

distributed system.

• These components are independent of each other but have to work together for the larger

system to function properly.

• Ex. A car has many embedded systems controlled to its dash board. Each one is an

independent embedded system yet the entire car can be said to function properly only if all

the systems work together.

5. Small size and weight

• An embedded system that is compact in size and has light weight will be desirable or more

popular than one that is bulky and heavy.

• Ex. Currently available cell phones. The cell phones that have the maximum features are

popular but also their size and weight is an important characteristic

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 3 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

6. Power concerns

• It is desirable that the power utilization and heat dissipation of any embedded system be

low.

• If more heat is dissipated then additional units like heat sinks or cooling fans need to be

added to the circuit.

If more power is required then a battery of higher power or more batteries need to be
accommodated in the embedded system

•

QUALITY ATTRIBUTES OF EMBEDDED SYSTEM

These are the attributes that together form the deciding factor about the quality of an embedded

system.

There are two types of quality attributes are:-

1. Operational Quality Attributes.

• These are attributes related to operation or functioning of an embedded system. The way

an embedded system operates affects its overall quality.

2. Non-Operational Quality Attributes.

• These are attributes not related to operation or functioning of an embedded system. The

way an embedded system operates affects its overall quality.

• These are the attributes that are associated with the embedded system before it can be put

in operation.

Operational Attributes

a) Response

• Response is a measure of quickness of the system.

• It gives you an idea about how fast your system is tracking the input variables.

• Most of the embedded system demand fast response which should be real-time.

b) Throughput

• Throughput deals with the efficiency of system.

• It can be defined as rate of production or process of a defined process over a stated period

of time.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 4 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

• In case of card reader like the ones used in buses, throughput means how much transaction

the reader can perform in a minute or hour or day.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 5 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 6 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

c) Reliability

• Reliability is a measure of how much percentage you rely upon the proper functioning of

the system .

• Mean Time between failures and Mean Time To Repair are terms used in defining system

reliability.

• Mean Time between failures can be defined as the average time the system is functioning

before a failure occurs.

• Mean time to repair can be defined as the average time the system has spent in repairs.

d) Maintainability

• Maintainability deals with support and maintenance to the end user or a client in case of

technical issues and product failures or on the basis of a routine system checkup

• It can be classified into two types :-

1. Scheduled or Periodic Maintenance

• This is the maintenance that is required regularly after a periodic time interval.

• Example : Periodic Cleaning of Air Conditioners Refilling of printer cartridges.

2. Maintenance to unexpected failure

• This involves the maintenance due to a sudden breakdown in the functioning of the system.

• Example:

1. Air conditioner not powering on

2. Printer not taking paper in spite of a full paper stack

e) Security

• Confidentiality, Integrity and Availability are three corner stones of information security.

• Confidentiality deals with protection data from unauthorized disclosure.

• Integrity gives protection from unauthorized modification.

• Availability gives protection from unauthorized user

• Certain Embedded systems have to make sure they conform to the security measures.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 7 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

• Ex. An Electronic Safety Deposit Locker can be used only with a pin number like a

password.

f) Safety

• Safety deals with the possible damage that can happen to the operating person and

environment due to the breakdown of an embedded system or due to the emission of

hazardous materials from the embedded products.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 8 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

• A safety analysis is a must in product engineering to evaluate the anticipated damage and

determine the best course of action to bring down the consequence of damages to an

acceptable level.

Non Operational Attributes

a) Testability and Debug-ability

• It deals with how easily one can test his/her design, application and by which mean he/she

can test it.

• In hardware testing the peripherals and total hardware function in designed manner

• Firmware testing is functioning in expected way

• Debug-ability is means of debugging the product as such for figuring out the probable

sources that create unexpected behavior in the total system

b) Evolvability

• For embedded system, the qualitative attribute “Evolvability” refer to ease with which the

embedded product can be modified to take advantage of new firmware or hardware

technology.

c) Portability

• Portability is measured of “system Independence”.

• An embedded product can be called portable if it is capable of performing its operation as

it is intended to do in various environments irrespective of different processor and or

controller and embedded operating systems.

d) Time to prototype and market

• Time to Market is the time elapsed between the conceptualization of a product and time at

which the product is ready for selling or use

• Product prototyping help in reducing time to market.

• Prototyping is an informal kind of rapid product development in which important feature

of the under consider are develop.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 9 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

• In order to shorten the time to prototype, make use of all possible option like use of reuse,

off the self component etc.

e) Per unit and total cost

• Cost is an important factor which needs to be carefully monitored. Proper market study and

cost benefit analysis should be carried out before taking decision on the per unit cost of the

embedded product.

• When the product is introduced in the market, for the initial period the sales and revenue

will be low

• There won’t be much competition when the product sales and revenue increase.

• During the maturing phase, the growth will be steady and revenue reaches highest point

and at retirement time there will be a drop in sales volume.

Embedded Systems-Application and Domain specific

Application specific systems : Washing Machine

Let us see the important parts of the washing machine; this will also help us understand the working

of the washing machine:

1) Water inlet control valve: Near the water inlet point of the washing there is water inlet control

valve. When you load the clothes in washing machine, this valve gets opened automatically and it

closes automatically depending on the total quantity of the water required. The water control valve

is actually the solenoid valve.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 10 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

2) Water pump: The water pump circulates water through the washing machine. It works in two

directions, re-circulating the water during wash cycle and draining the water during the spin cycle.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 11 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

3) Tub: There are two types of tubs in the washing washing machine: inner and outer. The clothes

are loaded in the inner tub, where the clothes are washed, rinsed and dried. The inner tub has small

holes for draining the water. The external tub covers theinner tub and supports it during various

cycles of clothes washing.

4) Agitator or rotating disc: The agitator is located inside the tub of the washing machine. It is

the important part of the washing machine that actually performs the cleaning operation of the

clothes. During the wash cycle the agitator rotates continuously and produces strong rotating

currents within the water due to which the clothes also rotate inside the tub. The rotation of the

clothes within water containing the detergent enables the removal of the dirt particles from the

fabric of the clothes. Thus the agitator produces most important function of rubbing the clothes

with each other as well as with water.

In some washing machines, instead of the long agitator, there is a disc that contains blades on its

upper side. The rotation of the disc and the blades produce strong currents within the water and

the rubbing of clothes that helps in removing the dirt from clothes.

5) Motor of the washing machine: The motor is coupled to the agitator or the disc and produces

it rotator motion. These are multispeed motors, whose speed can be changed as per the

requirement. In the fully automatic washing machine the speed of the motor i.e. the agitator

changes automatically as per the load on the washing machine.

6) Timer: The timer helps setting the wash time for the clothes manually. In the automatic mode

the time is set automatically depending upon the number of clothes inside the washing machine.

7) Printed circuit board (PCB): The PCB comprises of the various electronic components and

circuits, which are programmed to perform in unique ways depending on the load conditions (the

condition and the amount of clothes loaded in the washing machine). They are sort of artificial

intelligence devices that sense the various external conditions and take the decisions accordingly.

These are also called as fuzzy logic systems. Thus the PCB will calculate the total weight of the

clothes, and find out the quantity of water and detergent required, and the total time required for

washing the clothes. Then they will decide the time required for washing and rinsing. The entire

processing is done on a kind of processor which may be a microprocessor or microcontroller.

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 12 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

8) Drain pipe: The drain pipe enables removing the dirty water from the washing that has been

used for the washing purpose.

Automotive Embedded System (AES)

• The Automotive industry is one of the major application domains of embedded systems.

• Automotive embedded systems are the one where electronics take control over the

mechanical system. Ex. Simple viper control.

• The number of embedded controllers in a normal vehicle varies somewhere between 20 to

40 and can easily be between 75 to 100 for more sophisticated vehicles.

• One of the first and very popular use of embedded system in automotive industry was

microprocessor based fuel injection.

 Some of the other uses of embedded controllers in a vehicle are listed below:

a. Air Conditioner

b. Engine Control

c. Fan Control

d. Headlamp Control

e. Automatic break system control

f. Wiper control

g. Air bag control

h. Power Windows

AES are normally built around microcontrollers or DSPs or a hybrid of the two and are generally

known as Electronic Control Units (ECUs).

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 13 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

Types Of Electronic Control Units(ECU)

1. High-speed Electronic Control Units (HECUs):

a. HECUs are deployed in critical control units requiring fast response.

b. They Include fuel injection systems, antilock brake systems, engine control, electronic throttle,

steering controls, transmission control and central control units.

2. Low Speed Electronic Control Units (LECUs):-

a. They are deployed in applications where response time is not so critical.

b. They are built around low cost microprocessors and microcontrollers and digital signal

processors.

c. Audio controller, passenger and driver door locks, door glass control etc.

• Automotive Communication Buses

Embedded system used inside an automobile communicate with each other using serial buses. This

reduces the wiring required.

Following are the different types of serial Interfaces used in automotive embedded applications:

a. Controller Area Network (CAN):-

• CAN bus was originally proposed by Robert Bosch.

• It supports medium speed and high speed data transfer

• CAN is an event driven protocol interface with support for error handling in data

transmission.

b. Local Interconnect Network (LIN):-

• LIN bus is single master multiple slave communication interface with support for data rates

up to 20 Kbps and is used for sensor/actuator interfacing

no
tes

4f
ree

.in

EMBEDDED SYSTEM DESIGN CONCEPTS MODULE-4

SVIT,ECE DEPT 14 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

• LIN bus follows the master communication triggering to eliminate the bus arbitration

problem

• LIN bus applications are mirror controls , fan controls , seat positioning controls

c. Media-Oriented System Transport(MOST):-

• MOST is targeted for automotive audio/video equipment interfacing

• A MOST bus is a multimedia fiber optics point–to- point network implemented in a star ,

ring or daisy chained topology over optical fiber cables.

• MOST bus specifications define the physical as well as application layer , network layer

and media access control.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 1 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

What Is OS ?

An Operating System (OS) is an interface between computer user and computer hardware. An operating system

is software which performs all the basic tasks like file management, memory management, process

management, handling input and output, and controlling peripheral devices such as disk drives and printers.

Some popular Operating Systems include Linux Operating System, Windows Operating System, VMS, OS/400,

AIX, z/OS, etc.

Definition:

An operating system is a program that acts as an interface between the user and the computer hardware and

controls the execution of all kinds of programs.

Following are some of important functions of an operating System.

 Memory Management Processor Management Device Management File Management Security

Control over system performance Job accounting Error detecting aids Coordination between

other software and users

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 2 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

An Operating System provides services to both the users and to the programs. It provides programs an

environment to execute.

 It provides users the services to execute the programs in a convenient manner.

 Following are a few common services provided by an operating system: Program execution

 I/O operations

 File System manipulation

 Communication

 Error Detection

 Resource Allocation

 Protection

Basic Functions of Operation System:

The various functions of operating system are as follows:

1. Process Management:

 A program does nothing unless their instructions are executed by a CPU.A process is a

program in execution. A time shared user program such as a complier is a process. A word

processing program being run by an individual user on a pc is a process.

 A system task such as sending output to a printer is also a process. A process needs certain

resources including CPU time, memory files & I/O devices to accomplish its task.

 These resources are either given to the process when it is created or allocated to it while it is

running. The OS is responsible for the following activities of process management.

 Creating & deleting both user & system processes.

 Suspending & resuming processes.

 Providing mechanism for process synchronization.

 Providing mechanism for process communication.

 Providing mechanism for deadlock handling.

2. Main Memory Management:

The main memory is central to the operation of a modern computer system. Main memory is a

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 3 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

large array of words or bytes ranging in size from hundreds of thousand to billions. Main

memory stores the quickly accessible data shared by the CPU & I/O device. The central

processor reads instruction from main memory during instruction fetch cycle & it both reads

&writes data from main memory during the data fetch cycle. The main memory is generally the

only large storage device that the CPU is able to address & access directly. For example, for the

CPU to process data from disk. Those data must first be transferred to main memory by CPU

generated E/O calls. Instruction must be in memory for the CPU to execute them. The OS is

responsible for the following activities in connection with memory management.

 Keeping track of which parts of memory are currently being used & by whom.

 Deciding which processes are to be loaded into memory when memory space becomes

available.

 Allocating &deal locating memory space as needed.

3. File Management:

File management is one of the most important components of an OS computer can store

information on several different types of physical media magnetic tape, magnetic disk & optical

disk are the most common media. Each medium is controlled by a device such as disk drive or

tape drive those has unique characteristics. These characteristics include access speed, capacity,

data transfer rate & access method (sequential or random).For convenient use of computer

system the OS provides a uniform logical view of information storage. The OS abstracts from

the physical properties of its storage devices to define a logical storage unit the file. A file is

collection of related information defined by its creator. The OS is responsible for the following

activities of file management.

 Creating & deleting files.

 Creating & deleting directories.

 Supporting primitives for manipulating files & directories.

 Mapping files into secondary storage.

 Backing up files on non-volatile media.

4. I/O System Management:

One of the purposes of an OS is to hide the peculiarities of specific hardware devices from the

user. For example, in UNIX the peculiarities of I/O devices are hidden from the bulk of the OS

itself by the I/O subsystem. The I/O subsystem consists of:

 A memory management component that includes buffering, catching & spooling.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 4 Prepared by Prof.Pavankumar.E, Prof.Pavithra.G.S

 A general device- driver interfaces drivers for specific hardware devices. Only the device

driver knows the peculiarities of the specific device to which it is assigned.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 5 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

5. Secondary Storage Management:

The main purpose of computer system is to execute programs. These programs with the

data they access must be in main memory during execution. As the main memory is too

small to accommodate all data & programs & because the data that it holds are lost when

power is lost. The computer system must provide secondary storage to back-up main

memory. Most modern computer systems are disks as the storage medium to store data &

program. The operating system is responsible for the following activities of disk

management.

 Free space management.

 Storage allocation.

 Disk scheduling

Because secondary storage is used frequently it must be used efficiently.

Networking:

A distributed system is a collection of processors that don’t share memory peripheral devices

or a clock. Each processor has its own local memory & clock and the processor communicate

with one another through various communication lines such as high speed buses or networks.

The processors in the system are connected through communication networks which are

configured in a number of different ways. The communication network design must consider

message routing & connection strategies are the problems of connection & security.

Protection or security:

If a computer system has multi users & allow the concurrent execution of multiple processes

then the various processes must be protected from one another’s activities. For that purpose,

mechanisms ensure that files, memory segments, CPU & other resources can be operated on

by only those processes that have gained proper authorization from the OS.

Command interpretation:

One of the most important functions of the OS is connected interpretation where it acts as the

interface between the user & the OS.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 6 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Monolithic Operating Systems:

• Oldest kind of OS structure (“modern” examples are DOS, original MacOS)

 • Problem: applications can e.g. – trash OS software. – trash another application. – hoard CPU time. –

abuse I/O devices. – Etc.

 • No good for fault containment (or multi-user).

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 7 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

 • Need a better solution.

Microkernel Operating Systems:

 Alternative structure: – push some OS services into servers. – servers may be privileged (i.e.

operate in kernel mode).

 • Increases both modularity and extensibility.

 • Still access kernel via system calls, but need new way to access servers: ⇒ inter-process

 communication (IPC) schemes

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 8 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Real time Systems:

 Real time system is used when there are rigid time requirements on the operation of a processor or

flow of data. Sensors bring data to the computers. The computer analyzes data and adjusts controls to

modify the sensors inputs. System that controls scientific experiments, medical imaging systems and

some display systems are real time systems. The disadvantages of real time system are: a. A real time

system is considered to function correctly only if it returns the correct result within the time constraints.

b. Secondary storage is limited or missing instead data is usually stored in short term memory or ROM. c.

Advanced OS features are absent. Real time system is of two types such as

 • Hard real time systems: It guarantees that the critical task has been completed on time. The sudden

task is takes place at a sudden instant of time.

 • Soft real time systems: It is a less restrictive type of real time system where a critical task gets priority

over other tasks and retains that priority until it computes. These have more limited utility than hard

real time systems. Missing an occasional deadline is acceptable e.g. QNX, VX works. Digital audio or

multimedia is included in this category. It is a special purpose OS in which there are rigid time

requirements on the operation of a processor. A real time OS has well defined fixed time constraints.

Processing must be done within the time constraint or the system will fail. A real time system is said to

function correctly only if it returns the correct result within the time constraint. These systems are

characterized by having time as a key parameter.

Task :

 Task is a piece of code or program that is separate from another task and can be

executed independently of the other tasks.

 In embedded systems, the operating system has to deal with a limited number of

tasks depending on the functionality to be implemented in the embedded system.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 9 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

 Multiple tasks are not executed at the same time instead they are executed in

pseudo parallel i.e. the tasks execute in turns as the use the processor.

 From a multitasking point of view, executing multiple tasks is like a single book

being read by multiple people, at a time only one person can read it and then take

turns to read it.

 Different bookmarks may be used to help a reader identify where to resume reading

next time.

 An Operating System decides which task to execute in case there are multiple tasks

to be executed. The operating system maintains information about every task and

information about the state of each task.

 The information about a task is recorded in a data structure called the task context.

When a task is executing, it uses the processor and the registers available for all

sorts of processing. When a task leaves the processor for another task to execute

before it has finished its own, it should resume at a later time from where it stopped

and not from the first instruction. This requires the information about the task with

respect to the registers of the processor to be stored somewhere. This information

is recorded in the task context.

Task States

 In an operation system there are always multiple tasks. At a time only one task can be executed.

This means that there are other tasks which are waiting their turn to be

executed.

 Depending upon execution or not a task may be classified into the following three states:

 Running state - Only one task can actually be using the processor at a given time that task

is said to be the “running” task and its state is “running state”. No other task can be in that

same state at the same time

 Ready state - Tasks that are not currently using the processor but are ready to run are in

the “ready” state. There may be a queue of tasks in the ready state.

 Waiting state - Tasks that are neither in running nor ready state but that are waiting for

some event external to themselves to occur before the can go for execution on are in the

“waiting” state.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 10 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Process Concept:

Process: A process or task is an instance of a program in execution. The execution of a

process must programs in a sequential manner. At any time at most one instruction is

executed. The process includes the current activity as represented by the value of the program

counter and the content of the processors registers. Also it includes the process stack which

contain temporary data (such as method parameters return address and local variables) & a

data section which contain global variables.

Difference between process & program:

A program by itself is not a process. A program in execution is known as a process. A program

is a passive entity, such as the contents of a file stored on disk where as process is an active

entity with a program counter specifying the next instruction to execute and a set of associated

resources may be shared among several process with some scheduling algorithm being used to

determinate when the stop work on one process and service a different one.

Process state: As a process executes, it changes state. The state of a process is defined by the

correct activity of that process. Each process may be in one of the following states.

 New: The process is being created.

 Ready: The process is waiting to be assigned to a processor.

 Running: Instructions are being executed.

 Waiting: The process is waiting for some event to occur.

 Terminated: The process has finished execution.

Many processes may be in ready and waiting state at the same time. But only one process can

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 11 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

be running on any processor at any instant.

Process scheduling:

Scheduling is a fundamental function of OS. When a computer is multiprogrammed, it has

multiple processes completing for the CPU at the same time. If only one CPU is available, then

a choice has to be made regarding which process to execute next. This decision making

process is known as scheduling and the part of the OS that makes this choice is called a

scheduler. The algorithm it uses in making this choice is called scheduling algorithm.

Scheduling queues: As processes enter the system, they are put into a job queue. This queue

consists of all process in the system. The process that are residing in main memory and are

ready & waiting to execute or kept on a list called ready queue.

Process control block:

Each process is represented in the OS by a process control block. It is also by a process

control block. It is also known as task control block.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 12 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

A process control block contains many pieces of information associated with a specific

process. It includes the following informations.

 Process state: The state may be new, ready, running, waiting or terminated state.

 Program counter:it indicates the address of the next instruction to be executed

for this purpose.

 CPU registers: The registers vary in number & type depending on the computer

architecture. It includes accumulators, index registers, stack pointer & general

purpose registers, plus any condition- code information must be saved when

an interrupt occurs to allow the process to be continued correctly after- ward.

 CPU scheduling information:This information includes process priority pointers

to scheduling queues & any other scheduling parameters.

 Memory management information: This information may include such

information as the value of the bar & limit registers, the page tables or the

segment tables, depending upon the memory system used by the operating

system.

 Accounting information: This information includes the amount of CPU and real

time used, time limits, account number, job or process numbers and so on.

 I/O Status Information: This information includes the list of I/O devices allocated to

this process, a list of open files and so on. The PCB simply serves as the repository for

any information that may vary from process to process

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 13 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Threads :

Applications use concurrent processes to speed up their operation. However,

switching between processes within an application incurs high process switching

overhead because the size of the process state information is large, so operating

system designers developed an alternative model of execution of a program,

called a thread, that could provide concurrency within an application with less

overhead

To understand the notion of threads, let us analyze process switching
overhead and see where a saving can be made. Process switching overhead
has two components:

• Execution related overhead: The CPU state of the running process
has to be saved and the CPU state of the new process has to be
loaded in the CPU. This overhead is unavoidable.

• Resource-use related overhead: The process context also has to be

switched. It involves switching of the information about resources

allocated to the process, such as memory and files, and interaction

of the process with other processes. The large size of this

information adds to the process switching overhead.

Consider child processes Pi and Pj of the primary process of an application.

These processes inherit the context of their parent process. If none of these

processes have allocated any resources of their own, their context is

identical; their state information differs only in their CPU states and contents

of their stacks. Consequently, while switching between Pi and Pj ,much of the

saving and loading of process state information is redundant. Threads exploit

this feature to reduce the switching overhead.

A process creates a thread through a system call. The thread does not have

resources of its own, so it does not have a context; it operates by using the

context of the process, and accesses the resources of the process through it.

We use the phrases ―thread(s) of a process‖ and ―parent process of a

thread‖ to describe the relationship between a thread and the process whose

context it uses.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 14 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Figure illustrates the relationship between threads and processes. In the

abstract view of Figure , processPi has three threads,which are represented

by wavy lines inside the circle representing process Pi . Figure shows an

implementation arrangement. Process Pi has a context and a PCB. Each

thread of Pi is an execution of a program, so it has its own stack and a thread

control block (TCB),which is analogous to the PCB and stores the following

information:

1. Thread scheduling information—thread id, priority and state.

2. CPU state, i.e., contents of the PSW and GPRs.

3. Pointer to PCB of parent process.

4. TCB pointer, which is used to make lists of TCBs for scheduling.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 15 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

POSIX Threads:

POSIX Threads, usually referred to as pthreads, is an execution model that exists

independently from a language, as well as a parallel execution model. It allows a program

to control multiple different flows of work that overlap in time. Each flow of work is

referred to as a thread, and creation and control over these flows is achieved by making

calls to the POSIX Threads API. POSIX Threads is an API defined by the standard POSIX.1c,

Threads extensions (IEEE Std 1003.1c-1995).

Implementations of the API are available on many Unix-like POSIX-conformant operating

systems such as FreeBSD, NetBSD, OpenBSD, Linux, Mac OS X, Android[1] and Solaris,

typically bundled as a library libpthread. DR-DOS and Microsoft Windows implementations

also exist: within the SFU/SUA subsystem which provides a native implementation of a

number of POSIX APIs, and also within third-party packages such as pthreads-w32,[2] which

implements pthreads on top of existing Windows API.

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Execution_model
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/DR-DOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_Services_for_UNIX
https://en.wikipedia.org/wiki/Third-party_software_component
https://en.wikipedia.org/wiki/POSIX_Threads#cite_note-2
https://en.wikipedia.org/wiki/Windows_API

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 16 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Preemptive Scheduling:

It is the responsibility of CPU scheduler to allot a process to CPU whenever the CPU

is in the idle state. The CPU scheduler selects a process from ready queue and

allocates the process to CPU. The scheduling which takes place when a process

switches from running state to ready state or from waiting state to ready state is

called Preemptive Scheduling

Shortest Job First Scheduling (SJF) Algorithm: This algorithm associates with each

process if the CPU is available. This scheduling is also known as shortest next CPU

burst, because the scheduling is done by examining the length of the next CPU burst of

the process rather than its total length. Consider the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Solution:According to the SJF the Gantt chart will be

P3 P1 P2 P4

0 2 5 9 14

The waiting time for process P1 = 0, P2 = 2, P3 = 5, P4 = 9 then the turnaround time for

process P3 = 0 + 2 = 2, P1 = 2 + 3 = 5, P4 = 5 + 4 = 9, P2 = 9 + 5 =14.

Then average waiting time = (0 + 2 + 5 + 9)/4 = 16/4 = 4

Average turnaround time = (2 + 5 + 9 + 14)/4 = 30/4 =

7.5

The SJF algorithm may be either preemptive or non preemptive algorithm. The

preemptive SJF is also known as shortest remaining time first.

Consider the following example.

Process Arrival Time CPU time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 17 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

In this case the Gantt chart will be

P1 P2 P4 P1 P3

0 1 5 10 17 26

The waiting time for

process P1 = 10 - 1 =9

P2 = 1 – 1 = 0

P3 = 17 – 2 = 15

P4 = 5 – 3 = 2

The average waiting time = (9 + 0 + 15 + 2)/4 = 26/4 = 6.5

Round Robin Scheduling Algorithm: This type of algorithm is designed only for the time

sharing system. It is similar to FCFS scheduling with preemption condition to switch between

processes. A small unit of time called quantum time or time slice is used to switch between

the processes. The average waiting time under the round robin policy is quiet long. Consider

the following example:

Process CPU time

P1 3

P2 5

P3 2

P4 4

Time Slice = 1 millisecond.

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P4 P2 P4 P2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The waiting time for process

P1 = 0 + (4 – 1) + (8 – 5) = 0 + 3 + 3 = 6

P2 = 1 + (5 – 2) + (9 – 6) + (11 – 10) + (12 – 11) + (13 – 12) = 1 + 3 + 3 + 1 + 1 + 1 = 10

P3 = 2 + (6 – 3) = 2 + 3 = 5

P4 = 3 + (7 – 4) + (10 – 8) + (12 – 11) = 3 + 3 + 2 + 1 = 9

The average waiting time = (6 + 10 + 5 + 9)/4 = 7.5

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 18 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Task Communication :

A shared memory is an extra piece of memory that is attached to some address spaces for

their owners to use. As a result, all of these processes share the same memory segment and

have access to it. Consequently, race conditions may occur if memory accesses are not

handled properly. The following figure shows two processes and their address spaces. The

yellow rectangle is a shared memory attached to both address spaces and both process 1

and process 2 can have access to this shared memory as if the shared memory is part of its

own address space. In some sense, the original address spaces is "extended" by attaching

this shared memory.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 19 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Definition - What does Pipe mean?

A pipe is a method used to pass information from one program process to another. Unlike

other types of inter-process communication, a pipe only offers one-way communication by

passing a parameter or output from one process to another. The information that is passed

through the pipe is held by the system until it can be read by the receiving process. also

known as a FIFO for its behavior.

In computing, a named pipe (also known as a FIFO) is one of the methods for intern-

process communication.

 It is an extension to the traditional pipe concept on Unix. A traditional pipe is

“unnamed” and lasts only as long as the process.

 A named pipe, however, can last as long as the system is up, beyond the life of the

process. It can be deleted if no longer used.

 Usually a named pipe appears as a file, and generally processes attach to it for inter-

process communication. A FIFO file is a special kind of file on the local storage which

allows two or more processes to communicate with each other by reading/writing

to/from this file.

 A FIFO special file is entered into the filesystem by calling mkfifo() in C. Once we have

created a FIFO special file in this way, any process can open it for reading or writing,

in the same way as an ordinary file. However, it has to be open at both ends

simultaneously before you can proceed to do any input or output operations on it.

Message passing:

Message passing can be synchronous or asynchronous . Synchronous message

passing systems require the sender and receiver to wait for each other while

transferring the message. In asynchronous communication the sender and

receiver do not wait for each other and can carry on their own computations

while transfer of messages is being done.

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 20 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The advantage to synchronous message passing is that it is conceptually less complex.

Synchronous message passing is analogous to a function call in which the message sender

is the function caller and the message receiver is the called function. Function calling is

easy and familiar. Just as the function caller stops until the called function completes, the

sending process stops until the receiving process completes. This alone makes synchronous

message unworkable for some applications. For example, if synchronous message passing

would be used exclusively, large, distributed systems generally would not perform well

enough to be usable. Such large, distributed systems may need to continue to operate while

some of their subsystems are down; subsystems may need to go offline for some kind of

maintenance, or have times when subsystems are not open to receiving input from other

systems.

Message queue:

Message queues provide an asynchronous communications protocol, meaning that the

sender and receiver of the message do not need to interact with the message queue at the

same time. Messages placed onto the queue are stored until the recipient retrieves them.

Message queues have implicit or explicit limits on the size of data that may be transmitted

in a single message and the number of messages that may remain outstanding on the

queue.

Many implementations of message queues function internally: within an operating

system or within an application. Such queues exist for the purposes of

that system only.[1][2][3]

Other implementations allow the passing of messages between different computer systems,

potentially connecting multiple applications and multiple operating systems.[4] These

message queueing systems typically provide enhanced resilience functionality to ensure

that messages do not get "lost" in the event of a system failure. Examples of commercial

implementations of this kind of message queueing software (also known as message-

oriented middleware) include IBM WebSphere MQ (formerly MQ Series) and Oracle

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Asynchronous_communication
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Message_queue#cite_note-1
https://en.wikipedia.org/wiki/Message_queue#cite_note-1
https://en.wikipedia.org/wiki/Message_queue#cite_note-3
https://en.wikipedia.org/wiki/Message_queue#cite_note-4
https://en.wikipedia.org/wiki/Resilience_(network)
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/IBM_WebSphere_MQ
https://en.wikipedia.org/wiki/Oracle_Advanced_Queuing

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 21 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Advanced Queuing (AQ). There is a Java standard called Java Message Service, which has

several proprietary and free software implementations.

Implementations exist as proprietary software, provided as a service, open source

software, or a hardware-based solution.

Mail box:

Mailboxes provide a means of passing messages between tasks for data exchange or task

synchronization. For example, assume that a data gathering task that produces data needs

to convey the data to a calculation task that consumes the data. This data gathering task can

convey the data by placing it in a mailbox and using the SEND command; the calculation

task uses RECEIVE to retrieve the data. If the calculation task consumes data faster than the

gatherer produces it, the tasks need to be synchronized so that only new data is operated

on by the calculation task. Using mailboxes achieves synchronization by forcing the

calculation task to wait for new data before it operates. The data producer puts the data in

a mailbox and SENDs it. The data consumer task calls RECEIVE to check whether there is

new data in the mailbox; if not, RECEIVE calls Pause() to allow other tasks to execute while

the consuming task is waiting for the new data.

no
tes

4f
ree

.in

https://en.wikipedia.org/wiki/Oracle_Advanced_Queuing
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_Message_Service
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Message_queuing_service

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 22 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Signaling :

signals are commonly used in POSIX systems. Signals are sent to the current process telling

it what it needs to do, such as, shutdown, or that it has committed an exception. A process

has several signal-handlers which execute code when a relevant signal is encountered. The

ANSI header for these tasks is <signal.h>, which includes routines to allow signals to be

raised and read.

Signals are essentially software interrupts. It is possible for a process to ignore most

signals, but some cannot be blocked. Some of the common signals are Segmentation

Violation (reading or writing memory that does not belong to this process), Illegal

Instruction (trying to execute something that is not a proper instruction to the CPU), Halt

(stop processing for the moment), Continue (used after a Halt), Terminate (clean up and

quit), and Kill (quit now without cleaning up).

RPC:

Remote Procedure Call (RPC) is a powerful technique for constructing distributed,

client-server based applications. It is based on extending the conventional local

procedure calling, so that the called procedure need not exist in the same address

space as the calling procedure. The two processes may be on the same system, or they

may be on different systems with a network connecting them.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 23 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The following steps take place during a RPC:

1. A client invokes a client stub procedure, passing parameters in the usual way. The

client stub resides within the client’s own address space.

2. The client stub marshalls(pack) the parameters into a message. Marshalling includes

converting the representation of the parameters into a standard format, and copying each

parameter into the message.

3. The client stub passes the message to the transport layer, which sends it to the remote

server machine.

4. On the server, the transport layer passes the message to a server stub,

which demarshalls(unpack) the parameters and calls the desired server routine using the

regular procedure call mechanism.

5. When the server procedure completes, it returns to the server stub (e.g., via a normal

procedure call return), which marshalls the return values into a message. The server stub

then hands the message to the transport layer.

6. The transport layer sends the result message back to the client transport layer, which

hands the message back to the client stub.

7. The client stub demarshalls the return parameters and execution returns to the caller.

Process Synchronization

A co-operation process is one that can affect or be affected by other processes

executing in the system. Co-operating process may either directly share a logical

address space or be allotted to the shared data only through files. This

concurrent access is known as Process synchronization.

Critical Section Problem:

Consider a system consisting of n processes (P0, P1, ………Pn -1) each process has

a segment of code which is known as critical section in which the process may be

changing common variable, updating a table, writing a file and so on. The

important feature of the system is that when the process is executing in its

critical section no other process is to be allowed to execute in its critical section.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 24 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The execution of critical sections by the processes is a mutually exclusive. The

critical section problem is to design a protocol that the process can use to

cooperate each process must request permission to enter its critical section. The

section of code implementing this request is the entry section. The critical section

is followed on exit section. The remaining code is the remainder section.

Example:

While (1)

{

Entry Section;

Critical

Section; Exit

Section;

Remainder Section;

}

A solution to the critical section problem must satisfy the following three conditions.

1. Mutual Exclusion: If process Pi is executing in its critical section then no

any other process can be executing in their critical section.

2. Progress: If no process is executing in its critical section and some

process wish to enter their critical sections then only those process that

are not executing in their remainder section can enter its critical section

next.

3. Bounded waiting: There exists a bound on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request.

Deadlock:
In a multiprogramming environment several processes may compete for a finite

number of resources. A process request resources; if the resource is available at

that time a process enters the wait state. Waiting process may never change its

state because the resources requested are held by other waiting process. This

situation is known as deadlock.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 25 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Deadlock Characteristics: In a deadlock process never finish executing and

system resources are tied up. A deadlock situation can arise if the following four

conditions hold simultaneously in a system.

 Mutual Exclusion: At a time only one process can use the resources. If

another process requests that resource, requesting process must wait

until the resource has been released.

 Hold and wait: A process must be holding at least one resource and

waiting to additional resource that is currently held by other processes.

 No Preemption: Resources allocated to a process can’t be forcibly taken

out from it unless it releases that resource after completing the task.

 Circular Wait: A set {P0, P1, …….Pn} of waiting state/ process must exists

such that P0 is waiting for a resource that is held by P1, P1 is waiting for

the resource that is held by P2 ….. P(n – 1) is waiting for the resource that

is held by Pn and Pn is waiting for the resources that is held by P4.

Dining Philosopher Problem: Consider 5 philosophers to spend their lives in thinking &

eating. A philosopher shares common circular table surrounded by 5 chairs each occupies

by one philosopher. In the center of the table there is a bowl of rice and the table is laid

with 6 chopsticks as shown in below figure.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 26 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

When a philosopher thinks she does not interact with her colleagues. From time to time a

philosopher gets hungry and tries to pickup two chopsticks that are closest to her. A

philosopher may pickup one chopstick or two chopsticks at a time but she cannot pickup a

chopstick that is already in hand of the neighbor. When a hungry philosopher has both her

chopsticks at the same time, she eats without releasing her chopsticks. When she finished

eating, she puts down both of her chopsticks and starts thinking again. This problem is

considered as classic synchronization problem. According to this problem each chopstick is

represented by a semaphore. A philosopher grabs the chopsticks by executing the wait

operation on that semaphore. She releases the chopsticks by executing the signal operation on

the appropriate semaphore

The structure of dining philosopher is as follows:

do{

Wait (chopstick [i]);

Wait (chopstick [(i+1)%5]);

.

Eat

.

Signal (chopstick [i]);

Signal (chopstick [(i+1)%5]);

.

Think

.

} While (1);

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 27 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

The Integrated Development Environment:

Integrated development environments are designed to maximize programmer productivity

by providing tight-knit components with similar user interfaces. IDEs present a single

program in which all development is done. This program typically provides many features

for authoring, modifying, compiling, deploying and debugging software. This contrasts with

software development using unrelated tools, such as vi, GCC or make.

One aim of the IDE is to reduce the configuration necessary to piece together multiple

development utilities, instead providing the same set of capabilities as a cohesive unit.

Reducing that setup time can increase developer productivity, in cases where learning to

use the IDE is faster than manually integrating all of the individual tools. Tighter

integration of all development tasks has the potential to improve overall productivity

beyond just helping with setup tasks. For example, code can be continuously parsed while

it is being edited, providing instant feedback when syntax errors are introduced. That can

speed learning a new programming language and its associated libraries.

Some IDEs are dedicated to a specific programming language, allowing a feature set that

most closely matches the programming paradigms of the language. However, there are

many multiple-language IDEs, such as Eclipse, ActiveState Komodo, IntelliJ IDEA, Oracle

JDeveloper, NetBeans, Codenvy and Microsoft Visual Studio. Xcode, Xojo and Delphi are

dedicated to a closed language or set of programming languages.

While most modern IDEs are graphical, text-based IDEs such as Turbo Pascal were in

popular use before the widespread availability of windowing systems like Microsoft

Windows and the X Window System (X11). They commonly use function keys or hotkeys to

execute frequently used commands or macros.

no
tes

4f
ree

.in

http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Make_%28software%29
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/ActiveState_Komodo
http://en.wikipedia.org/wiki/IntelliJ_IDEA
http://en.wikipedia.org/wiki/Oracle_JDeveloper
http://en.wikipedia.org/wiki/Oracle_JDeveloper
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Xojo
http://en.wikipedia.org/wiki/Embarcadero_Delphi
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Keyboard_shortcut

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 28 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

A cross compiler is a compiler capable of creating executable code for a platform other

than the one on which the compiler is running. For example in order to compile for

Linux/ARM you first need to obtain its libraries to compile against.

A cross compiler is necessary to compile for multiple platforms from one machine. A

platform could be infeasible for a compiler to run on, such as for the microcontroller of an

embedded system because those systems contain no operating system. In

paravirtualization one machine runs many operating systems, and a cross compiler could

generate an executable for each of them from one main source.

Cross compilers are not to be confused with a source-to-source compilers. A cross

compiler is for cross-platform software development of binary code, while a source-to-

source "compiler" just translates from one programming language to another in text code.

Both are programming tools.

Uses of cross compilers

The fundamental use of a cross compiler is to separate thebuild environment from target

environment. This is useful in a number of situations:

Embedded computers where a device has extremely limited resources. For example, a

microwave oven will have an extremely small computer to read its touchpad and door

sensor, provide output to a digital display and speaker, and to control the machinery for

cooking food. This computer will not be powerful enough to run a compiler, a file system,

or a development environment. Since debugging and testing may also require more

resources than are available on an embedded system, cross- compilation can be less

involved and less prone to errors than native compilation.

Compiling for multiple machines. For example, a company may wish to support several

different versions of an operating system or to support several different operating

systems. By using a cross compiler, a single build environment can be set up to compile for

each of these targets.

Compiling on a server farm. Similar to compiling for multiple machines, a complicated

build that involves many compile operations can be executed across any machine that is

free, regardless of its underlying hardware or the operating system version that it is

running.

no
tes

4f
ree

.in

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Platform_%28computing%29
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Paravirtualization
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Server_farm

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 29 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Bootstrapping to a new platform. When developing software for a new platform, or the

emulator of a future platform, one uses a cross compiler to compile necessary tools such

as the operating system and a native compiler.

 What is a Disassembler?

In essence, a disassembler is the exact opposite of an assembler. Where an assembler

converts code written in an assembly language into binary machine code, a disassembler

reverses the process and attempts to recreate the assembly code from the binary machine

code.

Since most assembly languages have a one-to-one correspondence with underlying

machine instructions, the process of disassembly is relatively straight-forward, and a basic

disassembler can often be implemented simply by reading in bytes, and performing a table

lookup. Of course, disassembly has its own problems and pitfalls, and they are covered

later in this chapter.

Many disassemblers have the option to output assembly language instructions in Intel,

AT&T, or (occasionally) HLA syntax. Examples in this book will use Intel and AT&T syntax

interchangeably. We will typically not use HLA syntax for code examples, but that may

change in the future.

Decompilers

Decompilers take the process a step further and actually try to reproduce the code in a

high level language. Frequently, this high level language is C, because C is simple and

primitive enough to facilitate the decompilation process. Decompilation does have its

drawbacks, because lots of data and readability constructs are lost during the original

compilation process, and they cannot be reproduced. Since the science of decompilation is

still young, and results are "good" but not "great", this page will limit itself to a listing of

decompilers, and a general (but brief) discussion of the possibilities of decompilation.

no
tes

4f
ree

.in

http://en.wikipedia.org/wiki/Bootstrapping_%28compilers%29

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 30 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Tools

As with other software, embedded system designers use compilers, assemblers, and

debuggers to develop embedded system software. However, they may also use some more

specific tools:

For systems using digital signal processing, developers may use a math workbench such

as Scilab / Scicos, MATLAB / Simulink, EICASLAB, MathCad, Mathematica,or FlowStone

DSP to simulate the mathematics. They might also use libraries for both the host and

target which eliminates developing DSP routines as done in DSPnano RTOS.

model based development tool like VisSim lets you create and simulate graphical data

flow and UML State chart diagrams of components like digital filters, motor controllers,

communication protocol decoding and multi-rate tasks. Interrupt handlers can also be

created graphically. After simulation, you can automatically generate C-code to the VisSim

RTOS which handles the main control task and preemption of background tasks, as well as

automatic setup and programming of on-chip peripherals.

 Debugging

Embedded debugging may be performed at different levels, depending on the facilities

available. From simplest to most sophisticated they can be roughly grouped into the

following areas:

Interactive resident debugging, using the simple shell provided by the embedded

operating system (e.g. Forth and Basic)

External debugging using logging or serial port output to trace operation using either a

monitor in flash or using a debug server like the Remedy Debugger which even works for

heterogeneous multicore systems.

An in-circuit debugger (ICD), a hardware device that connects to the microprocessor via a

JTAG or Nexus interface. This allows the operation

of the microprocessor to be controlled externally, but is typically restricted to specific

debugging capabilities in the processor.

no
tes

4f
ree

.in

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Scilab
http://en.wikipedia.org/wiki/Scicos
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Simulink
http://en.wikipedia.org/wiki/EICASLAB
http://en.wikipedia.org/wiki/MathCad
http://en.wikipedia.org/wiki/Mathematica
http://en.wikipedia.org/w/index.php?title=FlowStone_DSP&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=FlowStone_DSP&action=edit&redlink=1
http://en.wikipedia.org/wiki/DSPnano_RTOS
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/Preemption_%28computing%29
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/Nexus_%28standard%29

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 31 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

An in-circuit emulator (ICE) replaces the microprocessor with a simulated equivalent,

providing full control over all aspects of the microprocessor.

A complete emulator provides a simulation of all aspects of the hardware, allowing all of it

to be controlled and modified, and allowing debugging on a normal PC. The downsides are

expense and slow operation, in some cases up to 100X slower than the final system.

For SoC designs, the typical approach is to verify and debug the design on an FPGA

prototype board. Tools such as Certus are used to insert probes in the FPGA RTL that

make signals available for observation. This is used to debug hardware, firmware and

software interactions across multiple FPGA with capabilities similar to a logic analyzer.

Unless restricted to external debugging, the programmer can typically load and run

software through the tools, view the code running in the processor, and start or stop its

operation. The view of the code may be as HLL source-code, assembly code or mixture of

both.

Simulation is the imitation of the operation of a real-world process or system over time.[1]

The act of simulating something first requires that a model be developed; this model

represents the key characteristics or behaviors/functions of the selected physical or

abstract system or process. The model represents the system itself, whereas the simulation

represents the operation of the system over time.

Simulation is used in many contexts, such as simulation of technology for performance

optimization, safety engineering, testing, training, education, and video games. Often,

computer experiments are used to study simulation models.

Key issues in simulation include acquisition of valid source information about the relevant

selection of key characteristics and behaviours, the use of simplifying approximations and

assumptions within the simulation, and fidelity and validity of the simulation outcomes.

no
tes

4f
ree

.in

http://en.wikipedia.org/wiki/In-circuit_emulator
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Source-code
http://en.wikipedia.org/wiki/Assembly_code
http://en.wikipedia.org/wiki/Simulation#cite_note-definition-1
http://en.wikipedia.org/wiki/Simulation#cite_note-definition-1
http://en.wikipedia.org/wiki/Function_%28engineering%29
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Computer_experiment

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 32 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

Emulator

This article is about emulators in computing. For a line of digital musical instruments, see

E-mu Emulator. For the Transformers character, see Circuit Breaker

(Transformers).#Shattered Glass. For other uses, see Emulation (disambiguation).

DOSBox emulates the command-line interface of DOS.

In computing, an emulator is hardware or software or both that duplicates (or emulates)

the functions of one computer system (the guest) in another computer system (the host),

different from the first one, so that the emulated behavior closely resembles the behavior

of the real system (the guest).

The above described focus on exact reproduction of behavior is in contrast to some other

forms of computer simulation, in which an abstract model of a system is being simulated.

For example, a computer simulation of a hurricane or a chemical reaction is not emulation.

OUT-OF-CIRCUIT :The code to be run on the target embedded system is always developed

on the host computer. This code is called the binary executable image or simply hex code.

The process of putting this code in the memory chip of the target embedded system is

called Downloading.

no
tes

4f
ree

.in

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/E-mu_Emulator
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/DOSBox
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Computer_simulation

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 33 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

There are two ways of downloading the binary image on the embedded system:

1. Using a Device Programmer

A device programmer is a piece of hardware that works in two steps.

Step 1 Once the binary image is ready on the computer, the device programmer is

connected to the computer and the binary image is transferred to the device programmer.

Step 2 The microcontroller/microprocessor or memory chip, usually the ROM which is

supposed to contain the binary image is placed on the proper socket on the device

programmer. The device programmer contains a software interface through which the user

selects the target microprocessor for which the binary image has to be downloaded. The

Device programmer then transfers the binary image bit by bit to the chip.

2. Using In System Programmer(ISP)

Certain Target embedded platforms contain a piece of hardware called ISP that have a

hardware interface to both the computer as well the chip where the code is to be

downloaded.

The user through the ISP’s software interface sends the binary image to the target board.

This avoids the requirement of frequently removing the microprocessor / microcontroller

or ROM for downloading the code if a device programmer had to be used.

DEBUGGING THE EMBEDDED SOFTWARE

 Debugging is the process of eliminating the bugs/errors in software.

 The software written to run on embedded systems may contain errors and hence

needs debugging.

 However, the difficulty in case of embedded systems is to find out the bug/ error

itself. This is because the binary image you downloaded on the target board was free

of syntax errors but

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 34 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

still if the embedded system does not function the way it was supposed to be then it can be

either because of a hardware problem or a software problem. Assuming that the hardware

is perfect all that remains to check is the software.

 The difficult part here is that once the embedded system starts functioning there is

no way for the user or programmer to know the internal state of the components on

the target board.

 The most primitive method of debugging is using LEDs. This is similar to using a

printf or a cout statement in c/c++ programs to test if the control enters the loop or

not. Similarly an LED blind or a pattern of LED blinks can be used to check if the

control enters a particular piece of code.

There are other advanced debugging tools like;

a. Remote debugger

b. Emulator

c. Simulator

Remote Debuggers

 Remote Debugger is a tool that can be commonly used for:

 Downloading

 Executing and

 Debugging embedded software

 A Remote Debugger contains a hardware interface between the host computer and

the target embedded system.

no
tes

4f
ree

.in

RTOS AND IDE FOR ESD MODULE-5

SVIT,ECE DEPT Page 35 Prepared by Prof.pavankumar.E,Prof.Pavithra.G.N

no
tes

4f
ree

.in

